TY - JOUR A1 - Steding, Svenja A1 - Kempka, Thomas A1 - Kühn, Michael T1 - How insoluble inclusions and intersecting layers affect the leaching process within potash seams JF - Applied Sciences : open access journal N2 - Potash seams are a valuable resource containing several economically interesting, but also highly soluble minerals. In the presence of water, uncontrolled leaching can occur, endangering subsurface mining operations. In the present study, the influence of insoluble inclusions and intersecting layers on leaching zone evolution was examined by means of a reactive transport model. For that purpose, a scenario analysis was carried out, considering different rock distributions within a carnallite-bearing potash seam. The results show that reaction-dominated systems are not affected by heterogeneities at all, whereas transport-dominated systems exhibit a faster advance in homogeneous rock compositions. In return, the ratio of permeated rock in vertical direction is higher in heterogeneous systems. Literature data indicate that most natural potash systems are transport-dominated. Accordingly, insoluble inclusions and intersecting layers can usually be seen as beneficial with regard to reducing hazard potential as long as the mechanical stability of leaching zones is maintained. Thereby, the distribution of insoluble areas is of minor impact unless an inclined, intersecting layer occurs that accelerates leaching zone growth in one direction. Moreover, it is found that the saturation dependency of dissolution rates increases the growth rate in the long term, and therefore must be considered in risk assessments. KW - salt dissolution KW - reactive transport KW - heterogeneity KW - density-driven KW - convection KW - PHREEQC KW - porous media Y1 - 2021 U6 - https://doi.org/10.3390/app11199314 SN - 2076-3417 VL - 11 IS - 19 PB - MDPI CY - Basel ER - TY - JOUR A1 - Rohrmann, Alexander A1 - Strecker, Manfred A1 - Bookhagen, Bodo A1 - Mulch, Andreas A1 - Sachse, Dirk A1 - Pingel, Heiko A1 - Alonso, Ricardo N. A1 - Schildgen, Taylor F. A1 - Montero, Carolina T1 - Can stable isotopes ride out the storms? The role of convection for water isotopes in models, records, and paleoaltimetry studies in the central Andes JF - Earth & planetary science letters KW - stable isotopes KW - Andes KW - precipitation KW - convection KW - paleoaltimetry KW - TRMM satellite data Y1 - 2014 U6 - https://doi.org/10.1016/j.epsl.2014.09.021 SN - 0012-821X SN - 1385-013X VL - 407 SP - 187 EP - 195 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Kaiser, Bjoern Onno A1 - Cacace, Mauro A1 - Scheck-Wenderoth, Magdalena A1 - Lewerenz, Bjoern T1 - Characterization of main heat transport processes in the Northeast German Basin constraints from 3-D numerical models JF - Geochemistry, geophysics, geosystems N2 - To investigate and quantify main physical heat driving processes affecting the present-day subsurface thermal field, we study a complex geological setting, the Northeast German Basin (NEGB). The internal geological structure of the NEGB is characterized by the presence of a relatively thick layer of Permian Zechstein salt (up to 5000 m), which forms many salt diapirs and pillows locally reaching nearly the surface. By means of three-dimensional numerical simulations we explore the role of heat conduction, pressure, and density driven groundwater flow as well as fluid viscosity related effects. Our results suggest that the regional temperature distribution within the basin results from interactions between regional pressure forces as driven by topographic gradients and thermal diffusion locally enhanced by thermal conductivity contrasts between the different sedimentary rocks with the highly conductive salt playing a prominent role. In contrast, buoyancy forces triggered by temperature-dependent fluid density variations are demonstrated to affect only locally the internal thermal configuration. Locations, geometry, and wavelengths of convective thermal anomalies are mainly controlled by the permeability field and thickness values of the respective geological layers. KW - advection KW - convection KW - coupled fluid and heat transport KW - numerical simulations KW - Northeast German Basin KW - salt structures Y1 - 2011 U6 - https://doi.org/10.1029/2011GC003535 SN - 1525-2027 VL - 12 IS - 13 PB - American Geophysical Union CY - Washington ER -