TY - JOUR A1 - Mischke, Steffen A1 - Lai, Zhongping A1 - Zhang, Chengjun T1 - Re-assessment of the paleoclimate implications of the Shell Bar in the Qaidam Basin, China JF - Journal of paleolimnolog N2 - The Shell Bar in the Qaidam Basin, China, is a prominent geological feature composed of millions of densely packed Corbicula shells. Since the mid 1980s, it has been regarded as evidence for existence of a large lake during Marine Isotope Stage (MIS) 3 in the presently hyper-arid Qaidam Basin. Early studies suggested the bivalve shells accumulated at the shore of a large lake, whereas more recent work led to the conclusion that the Shell Bar was formed within a deeper water body. Based on our re-assessment of sediments and fossils from the Shell Bar, investigation of exposed fluvio-lacustrine sections upstream of the Shell Bar and study of nearby modern streams, we infer that the Shell Bar represents a stream deposit. Corbicula is a typical stream-dweller around the world. Preservation of Corbicula shells of different sizes, as well as occurrence of many articulated shells, provide evidence against post-mortem transport and accumulation along a lake shore. Additionally, the SE-NW alignment of the Shell Bar is similar to modern intermittent stream beds in its vicinity and corresponds to the present-day slope towards the basin centre further NW, and furthermore, the predominantly sandy sediments also indicate that the Shell Bar was formed in a stream. Abundant ostracod shells in the Shell Bar sediments originated from stream-dwelling species that are abundant in modern streams in the vicinity of the Shell Bar, or in part from fluvio-lacustrine sediments exposed upstream of the Shell Bar, as a result of erosion and re-deposition. Deflation of alluvial fine-grained sediments in the Shell Bar region and protection of the stream deposits by the large and thick-walled Corbicula shells reversed the former channel relief and yielded the modern exposure, which is a prominent morphological feature. Occurrence of Corbicula shells in the Qaidam Basin indicates climate was apparently warmer than present during the formation of the Shell Bar because Corbicula does not live at similar or higher altitudes in the region today. Because the Shell Bar is no longer considered a deposit formed within a lake, its presence does not indicate paleoclimate conditions wetter than today. KW - Qaidam Basin KW - Tibetan Plateau KW - Late Pleistocene KW - Corbicula KW - Ostracoda KW - Taphonomy Y1 - 2014 U6 - https://doi.org/10.1007/s10933-012-9674-6 SN - 0921-2728 SN - 1573-0417 VL - 51 IS - 2 SP - 179 EP - 195 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Lai, ZhongPing A1 - Mischke, Steffen A1 - Madsen, David T1 - Paleoenvironmental implications of new OSL dates on the formation of the "Shell Bar" in the Qaidam Basin, northeastern Qinghai-Tibetan Plateau JF - Journal of paleolimnolog N2 - A geological feature in the Qaidam Basin known as the "Shell Bar" contains millions of freshwater clam shells buried in situ. Since the 1980s, this feature in the now hyper-arid basin has been interpreted to be lake deposits that provide evidence for a warmer and more humid climate than present during late marine isotope stage 3 (MIS 3). Global climate during late MIS 3 and the last glacial maximum, however, was cold and dry, with much lower sea levels. We re-investigated the feature geomorphologically and sedimentologically, and employed optically stimulated luminescence (OSL) dating to verify the chronology of the sediments. We interpret the Shell Bar to be a remnant of a river channel formed by a stream that ran across an exposed lake bed during a regressive lake phase. Deflation of the surrounding older, fine-grained lacustrine deposits has left the fluvial channel sediments topographically inverted, indicating the erosive nature of the landscape. Luminescence ages place the formation of the Shell Bar in MIS 5 (similar to 113-99 ka), much older than previous radiocarbon ages of < 40 ka BP, but place the paleoclimatic inferences more in accord with other regional and global climate proxy records. We present a brief review of the age differences derived from C-14 and OSL dating of some critical sections that were thought to represent a warmer and more humid climate than present during late MIS 3. We attribute the differences to underestimation of C-14 ages. We suggest that C-14 ages older than similar to 25 ka BP may require re-investigation, especially dates on samples from arid regions. KW - OSL dating KW - Depositional origin KW - Paleoenvironmental change KW - Late Pleistocene KW - Shell Bar KW - Qaidam Basin KW - Qinghai-Tibetan Plateau (QTP) Y1 - 2014 U6 - https://doi.org/10.1007/s10933-013-9710-1 SN - 0921-2728 SN - 1573-0417 VL - 51 IS - 2 SP - 197 EP - 210 PB - Springer CY - Dordrecht ER -