TY - JOUR A1 - Taran, Michail N. A1 - Nunez Valdez, Maribel A1 - Efthimiopoulos, Ilias A1 - Müller, J. A1 - Reichmann, Hans-Josef A1 - Wilke, Max A1 - Koch-Müller, Monika T1 - Spectroscopic and ab initio studies of the pressure-induced Fe2+ high-spin-to-low-spin electronic transition in natural triphylite-lithiophilite JF - Physics and Chemistry of Minerals N2 - Using optical absorption and Raman spectroscopic measurements, in conjunction with the first-principles calculations, a pressure-induced high-spin (HS)-to-low-spin (LS) state electronic transition of Fe2+ (M2-octahedral site) was resolved around 76-80GPa in a natural triphylite-lithiophilite sample with chemical composition (LiFe0.7082+Mn0.292PO4)-Li-M1-Fe-M2 (theoretical composition (LiFe0.52+Mn0.5PO4)-Li-M1-Fe-M2). The optical absorption spectra at ambient conditions consist of a broad doublet band with two constituents (1) (similar to 9330cm(-1)) and (2) (similar to 7110cm(-1)), resulting from the electronic spin-allowed transition (T2gEg)-T-5-E-5 of octahedral (HSFe2+)-Fe-M2. Both (1) and (2) bands shift non-linearly with pressure to higher energies up to similar to 55GPa. In the optical absorption spectrum measured at similar to 81GPa, the aforementioned HS-related bands disappear, whereas a new broadband with an intensity maximum close to 16,360cm(-1) appears, superimposed on the tail of the high-energy ligand-to-metal O2-Fe2+ charge-transfer absorption edge. We assign this new band to the electronic spin-allowed dd-transition (1)A(1g)(1)T(1g) of LS Fe2+ in octahedral coordination. The high-pressure Raman spectra evidence the Fe2+ HS-to-LS transition mainly from the abrupt shift of the P-O symmetric stretching modes to lower frequencies at similar to 76GPa, the highest pressure achieved in the Raman spectroscopic experiments. Calculations indicated that the presence of Mn-M2(2+) simply shifts the isostructural HS-to-LS transition to higher pressures compared to the triphylite Fe-M2(2+) end-member, in qualitative agreement with our experimental observations. KW - Phosphates KW - Triphylite KW - Raman KW - Infrared KW - Optical absorption spectroscopy KW - High pressure KW - Spin transition KW - DFT Y1 - 2019 U6 - https://doi.org/10.1007/s00269-018-1001-y SN - 0342-1791 SN - 1432-2021 VL - 46 IS - 3 SP - 245 EP - 258 PB - Springer CY - New York ER - TY - JOUR A1 - Spiekermann, Georg A1 - Wilke, Max A1 - Jahn, Sandro T1 - Structural and dynamical properties of supercritical H2O-SiO2 fluids studied by ab initio molecular dynamics JF - Chemical geology : official journal of the European Association for Geochemistry N2 - In this study we report the structure of supercritical H2O-SiO2 fluid composed of 50 mol% H2O and 50 mol% SiO2 at 3000 K and 2400 K. investigated by means of ab initio molecular dynamics of models comprising 192 and 96 atoms. The density is set constant to 138 g/cm(3), which yields a pressure of 4.3 GPa at 3000 K and 3.6 GPa at 2400 K. Throughout the trajec[ories, water molecules are formed and dissociated via the network modifying reaction 2 SiOH = SiOSi + H2O The calculation of the reaction constant K- [OH](2)/[H2O][O2-] is carried out on the basis of the experimentally relevant Q ' species notation and agrees well with an extrapolation of experimental data to 3000 K. After quench from 3000 K to 2400 K, the degree of polymerization of the silicate network in the 192-atom models increases noticeably within several tens of picoseconds, accompanied by release of molecular H2O. An unexpected opposite trend is observed in smaller 96-atom models, due to a finite size effect, as several uncorrelated models of 192 and 96 atoms indicate. The temperature-dependent slowing down of the H2O-silica interaction dynamics is described on the basis of the bond autocorrelation function. (C) 2016 Elsevier B.V. All rights reserved. KW - Fluid KW - SiO2-H2O KW - SiO(2)Molecular dynamics KW - Polymerization KW - DFT Y1 - 2016 U6 - https://doi.org/10.1016/j.chemgeo.2016.01.010 SN - 0009-2541 SN - 1878-5999 VL - 426 SP - 85 EP - 94 PB - Elsevier CY - Amsterdam ER -