TY - JOUR A1 - Ramachandran, Srikanthan A1 - Rupakheti, Maheswar A1 - Lawrence, Mark T1 - Black carbon dominates the aerosol absorption over the Indo-Gangetic Plain and the Himalayan foothills JF - Environment international : a journal of science, technology, health, monitoring and policy N2 - This study, based on new and high quality in situ observations, quantifies for the first time, the individual contributions of light-absorbing aerosols (black carbon (BC), brown carbon (BrC) and dust) to aerosol absorption over the Indo-Gangetic Plain (IGP) and the Himalayan foothill region, a relatively poorly studied region with several sensitive ecosystems of global importance, as well as highly vulnerable populations. The annual and seasonal average single scattering albedo (SSA) over Kathmandu is the lowest of all the locations. The SSA over Kathmandu is < 0.89 during all seasons, which confirms the dominance of light-absorbing carbonaceous aerosols from local and regional sources over Kathmandu. It is observed here that the SSA decreases with increasing elevation, confirming the dominance of light absorbing carbonaceous aerosols at higher elevations. In contrast, the SSA over the IGP does not exhibit a pronounced spatial variation. BC dominates (>= 75%) the aerosol absorption over the IGP and the Himalayan foothills throughout the year. Higher BC concentration at elevated locations in the Himalayas leads to lower SSA at elevated locations in the Himalayas. The contribution of dust to aerosol absorption is higher throughout the year over the IGP than over the Himalayan foothills. The aerosol absorption over South Asia is very high, exceeding available observations over East Asia, and also exceeds previous model estimates. This quantification will be valuable as observational constraints to help improve regional simulations of climate change, impacts on the glaciers and the hydrological cycle, and will help to direct the focus towards BC as the main contributor to aerosol-induced warming in the region. KW - atmospheric aerosols KW - characteristics KW - absorption KW - black carbon KW - brown KW - carbon KW - dust KW - Himalayas KW - IGP KW - South Asia Y1 - 2020 U6 - https://doi.org/10.1016/j.envint.2020.105814 SN - 0160-4120 SN - 1873-6750 VL - 142 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Macdonald, Elena A1 - Merz, Bruno A1 - Guse, Björn A1 - Wietzke, Luzie A1 - Ullrich, Sophie A1 - Kemter, Matthias A1 - Ahrens, Bodo A1 - Vorogushyn, Sergiy T1 - Event and catchment controls of heavy tail behavior of floods JF - Water resources research N2 - In some catchments, the distribution of annual maximum streamflow shows heavy tail behavior, meaning the occurrence probability of extreme events is higher than if the upper tail decayed exponentially. Neglecting heavy tail behavior can lead to an underestimation of the likelihood of extreme floods and the associated risk. Partly contradictory results regarding the controls of heavy tail behavior exist in the literature and the knowledge is still very dispersed and limited. To better understand the drivers, we analyze the upper tail behavior and its controls for 480 catchments in Germany and Austria over a period of more than 50 years. The catchments span from quickly reacting mountain catchments to large lowland catchments, allowing for general conclusions. We compile a wide range of event and catchment characteristics and investigate their association with an indicator of the tail heaviness of flood distributions, namely the shape parameter of the GEV distribution. Following univariate analyses of these characteristics, along with an evaluation of different aggregations of event characteristics, multiple linear regression models, as well as random forests, are constructed. A novel slope indicator, which represents the relation between the return period of flood peaks and event characteristics, captures the controls of heavy tails best. Variables describing the catchment response are found to dominate the heavy tail behavior, followed by event precipitation, flood seasonality, and catchment size. The pre-event moisture state in a catchment has no relevant impact on the tail heaviness even though it does influence flood magnitudes. KW - heavy tail behavior KW - floods KW - event characteristics KW - catchment KW - characteristics KW - catchment response Y1 - 2022 U6 - https://doi.org/10.1029/2021WR031260 SN - 0043-1397 SN - 1944-7973 VL - 58 IS - 6 PB - American Geophysical Union CY - Washington ER -