TY - JOUR A1 - Mikolaj, Michal A1 - Reich, Marvin A1 - Güntner, Andreas T1 - Resolving geophysical signals by terrestrial gravimetry BT - a time domain assessment of the correction-induced uncertainty JF - Journal of geophysical research : Solid earth N2 - Terrestrial gravimetry is increasingly used to monitor mass transport processes in geophysics boosted by the ongoing technological development of instruments. Resolving a particular phenomenon of interest, however, requires a set of gravity corrections of which the uncertainties have not been addressed up to now. In this study, we quantify the time domain uncertainty of tide, global atmospheric, large-scale hydrological, and nontidal ocean loading corrections. The uncertainty is assessed by comparing the majority of available global models for a suite of sites worldwide. The average uncertainty expressed as root-mean-square error equals 5.1nm/s(2), discounting local hydrology or air pressure. The correction-induced uncertainty of gravity changes over various time periods of interest ranges from 0.6nm/s(2) for hours up to a maximum of 6.7nm/s(2) for 6months. The corrections are shown to be significant and should be applied for most geophysical applications of terrestrial gravimetry. From a statistical point of view, however, resolving subtle gravity effects in the order of few nanometers per square second is challenged by the uncertainty of the corrections. Plain Language Summary Many scientists are exploring ways to benefit from gravity measurements in fields of high societal relevance such as monitoring of volcanoes or measuring the amount of water in underground. Any application of such new methods, however, requires careful preparation of the gravity measurements. The intention of the preparation process is to ensure that the measurements do not contain information about processes that are not of interest. For that reason, the influence of atmosphere, ocean, tides, and hydrology needs to be reduced from the gravity. In this study, we investigate how this reduction process influences the quality of the measurement. We found that the precision degrades especially owing to the hydrology. The ocean plays an important role at sites close to the coast and the atmosphere at sites located in mountains. The overall errors of the reductions may complicate a reliable use of gravity measurements in certain studies focusing on very small signals. Nevertheless, the precision of gravity reductions alone does not obstruct a meaningful use of gravity measurements in most research fields. Details specifying the reduction precision are provided in this study allowing scientist dealing with gravity measurements to decide if their signal of interest can be reliably resolved. KW - gravity observations KW - Earth tides KW - atmosphere KW - hydrology KW - nontidal ocean loading Y1 - 2019 U6 - https://doi.org/10.1029/2018JB016682 SN - 2169-9313 SN - 2169-9356 VL - 124 IS - 2 SP - 2153 EP - 2165 PB - American Geophysical Union CY - Washington ER -