TY - JOUR A1 - Prasad, Sushma A1 - Mishra, Praveen Kumar A1 - Menzel, Philip A1 - Gaye, Birgit A1 - Jehangir, Arshid A1 - Yousuf, Abdul R. T1 - Testing the validity of productivity proxy indicators in high altitude Tso Moriri Lake, NW Himalaya (India) JF - Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences N2 - We use multiple proxies (delta C-13(org), delta N-15(org), C/N, amino acids, biogenic silica) from the catchment, lake surface and core sediments to (i) identify the factors influencing conventional lacustrine primary productivity (LPP) indicators (isotopic covariance, C/N) in the sediments from the pristine high altitude Tso Moriri Lake during the late Quaternary, (ii) compare C/N and bulk organic isotopic data from the core with available biogenic silica and amino acid data to test the applicability of conventional LPP indicators during the late Quaternary, and (iii) evaluate the degree of sensitivity of LPP to climate change. Our results show that climate driven changes in water salinity and source water changes have influenced the isotopic (delta C-13, delta N-15) content of the lake water and hence the isotopic composition of bulk organic matter. Erosion has also played a role in masking the LPP as the catchment sediments from this high altitude lake have low C/N thereby casting doubt on the effectiveness of this parameter as an LPP indicator. Independent LPP indicators in Tso Moriri sediments clearly indicate that it is driven by climate change and increases during warmer periods. However, our data show that the LPP in recent times is not much higher than during the early Holocene, ruling out any impact of recent warming on LPP and therefore the possibility of large carbon sequestration in high altitude oligotrophic lakes. (C) 2016 Elsevier B.V. All rights reserved. KW - Tso Moriri Lake KW - isotopes KW - lacustrine primary productivity (LPP) KW - Indian monsoon KW - late Quaternary Y1 - 2016 U6 - https://doi.org/10.1016/j.palaeo.2016.02.027 SN - 0031-0182 SN - 1872-616X VL - 449 SP - 421 EP - 430 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Menzel, Philip A1 - Gaye, Birgit A1 - Mishra, Praveen Kumar A1 - Anoop, Ambili A1 - Basavaiah, Nathani A1 - Marwan, Norbert A1 - Plessen, Birgit A1 - Prasad, Sushma A1 - Riedel, Nils A1 - Stebich, Martina A1 - Wiesner, Martin G. T1 - Linking Holocene drying trends from Lonar Lake in monsoonal central India to North Atlantic cooling events JF - Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences N2 - We present the results of biogeochemical and mineralogical analyses on a sediment core that covers the Holocene sedimentation history of the climatically sensitive, closed, saline, and alkaline Lonar Lake in the core monsoon zone in central India. We compare our results of C/N ratios, stable carbon and nitrogen isotopes, grain-size, as well as amino acid derived degradation proxies with climatically sensitive proxies of other records from South Asia and the North Atlantic region. The comparison reveals some more or less contemporaneous climate shifts. At Lonar Lake, a general long term climate transition from wet conditions during the early Holocene to drier conditions during the late Holocene, delineating the insolation curve, can be reconstructed. In addition to the previously identified periods of prolonged drought during 4.6-3.9 and 2.0-0.6 cal ka that have been attributed to temperature changes in the Indo Pacific Warm Pool, several additional phases of shorter term climate alteration superimposed upon the general climate trend can be identified. These correlate with cold phases in the North Atlantic region. The most pronounced climate deteriorations indicated by our data occurred during 62-5.2,4.6-3.9, and 2.0-0.6 cal ka BP. The strong dry phase between 4.6 and 3.9 cal ka BP at Lonar Lake corroborates the hypothesis that severe climate deterioration contributed to the decline of the Indus Civilisation about 3.9 ka BP. (C) 2014 Elsevier B.V. All rights reserved. KW - Lake sediment KW - Indian monsoon KW - Holocene KW - Climate reconstruction KW - Stable carbon isotope KW - Amino acid Y1 - 2014 U6 - https://doi.org/10.1016/j.palaeo.2014.05.044 SN - 0031-0182 SN - 1872-616X VL - 410 SP - 164 EP - 178 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Katzenberger, Anja A1 - Levermann, Anders A1 - Schewe, Jacob A1 - Pongratz, Julia T1 - Intensification of very wet monsoon seasons in India under global warming JF - Geophysical research letters N2 - Rainfall-intense summer monsoon seasons on the Indian subcontinent that are exceeding long-term averages cause widespread floods and landslides. Here we show that the latest generation of coupled climate models robustly project an intensification of very rainfall-intense seasons (June-September). Under the shared socioeconomic pathway SSP5-8.5, very wet monsoon seasons as observed in only 5 years in the period 1965-2015 are projected to occur 8 times more often in 2050-2100 in the multi-model average. Under SSP2-4.5, these seasons become only a factor of 6 times more frequent, showing that even modest efforts to mitigate climate change can have a strong impact on the frequency of very strong rainfall seasons. Besides, we find that the increasing risk of extreme seasonal rainfall is accompanied by a shift from days with light rainfall to days with moderate or heavy rainfall. Additionally, the number of wet days is projected to increase. KW - Indian monsoon KW - climate modeling KW - extreme seasons KW - climate change KW - CMIP6 KW - India Y1 - 2022 U6 - https://doi.org/10.1029/2022GL098856 SN - 0094-8276 SN - 1944-8007 VL - 49 IS - 15 PB - American Geophysical Union CY - Washington ER -