TY - THES A1 - Pingel, Heiko T1 - Mountain-range uplift & climate-system interactions in the Southern Central Andes T1 - Wechselwirkungen zwischen Gebirgsbildung und Klima in den südlichen Zentralanden N2 - Zwei häufig diskutierte Aspekte der spätkänozoischen Gebirgsbildung der Anden sind der Zeitpunkt sowie die Art und Weise der Heraushebung des Puna-Plateaus und seiner Randgebiete innerhalb der Ostkordillere und die damit verbundenen klimatischen Änderungen in NW Argentinien. Die Ostkordillere trennt die Bereiche des endorheischen, ariden Plateaus von semiariden und extern entwässerten intermontanen Becken sowie dem humiden Andenvorland im Osten. Diese Unterschiede verdeutlichen die Bedeutung der östlichen Flanken der Anden als orografische Barrieren gegenüber feuchten Luftmassen aus dem Osten und spiegelt sich auch in ausgeprägten Relief- und Topografiegradienten, der Niederschlagsverteilung, und der Effizienz von Oberflächenprozessen wider. Obwohl das übergeordnete Deformationsmuster in diesem Teil der Anden eine ostwärts gerichtete Wanderung der Deformationsprozesse im Gebirge indiziert, gibt es hier keine klar definierte Deformationsfront. Hebungsvorgänge und die damit im Zusammenhang stehenden Sedimentprozesse setzen räumlich und zeitlich sehr unterschiedlich ein. Zudem gestalten periodisch wiederkehrende Deformationsereignisse innerhalb intermontaner Becken und diachrone Hebungsvorgänge, durch Reaktivierung älterer Sockelstrukturen im Vorland, eine detaillierte Auswertung der räumlich-zeitlichen Hebungsmuster zusätzlich schwierig. Die vorliegende Arbeit konzentriert sich hauptsächlich auf die tektonische Entwicklung der Ostkordillere im Nordwesten Argentiniens, die Ablagerungsgeschichte ihrer intermontanen Sedimentbecken und die topografische Entwicklung der Ostflanke des andinen Puna-Plateaus. Im Allgemeinen sind sich die Sedimentbecken der Ostkordillere und der angrenzenden Provinzen, den Sierras Pampeanas und der Santa Bárbara Region, den durch Störungen begrenzten und mit Sedimenten verfüllten Becken der hochandinen Plateauregion sehr ähnlich. Deutliche Unterschiede zur Puna bestehen aber dennoch, denn wiederholte Deformations-, Erosions- und Sedimentationsprozesse haben in den intermontanen Becken zu einer vielfältigen Stratigrafie, Überlagerungsprozessen und einer durch tektonische Prozesse und klimatischen Wandel charakterisierten Landschaft beigetragen. Je nach Erhaltungsgrad können in einigen Fällen Spuren dieser sedimentären und tektonischen Entwicklung bis in die Zeit zurückreichen, als diese Bereiche des Gebirges noch Teil eines zusammenhängenden und unverformten Vorlandbeckens waren. Im Nordwesten Argentiniens enthalten känozoische Sedimente zahlreiche datierbare und geochemisch korrelierbare Vulkanaschen, die nicht nur als wichtige Leithorizonte zur Entschlüsselung tektonischer und sedimentärer Ereignisse dienen. Die vulkanischen Gläser dieser Aschen archivieren außerdem Wasserstoff-Isotopenverhältnisse früherer Oberflächenwasser, mit deren Hilfe - im Vergleich mit den Isotopenverhältnissen rezenter meteorischer Wässer - die räumliche und zeitliche Entstehung orografischer Barrieren und tektonisch erzwungene Klima- und Umweltveränderungen verfolgt werden können. Uran-Blei-Datierungen an Zirkonen aus den vulkanischen Aschelagen und die Rekonstruktion sedimentärer Paläotransportrichtungen im intermontanen Humahuaca-Becken in der Ostkordillere (23.5° S) deuten an, dass das heutige Becken bis vor etwa 4.2 Ma Bestandteil eines größtenteils uneingeschränkten Ablagerungsbereichs war, der sich bis ins Vorland erstreckt haben muss. Deformation und Hebung östlich des heutigen Beckens sorgten dabei für eine fortschreitende Entkopplung des Entwässerungsnetzes vom Vorland und eine Umlenkung der Flussläufe nach Süden. In der Folge erzwang die weitere Hebung der Gebirgsblöcke das Abregnen östlicher Luftmassen in immer östlicher gelegene Bereiche. Zudem können periodische Schwankungen der hydrologischen Verbindung des Beckens mit dem Vorland im Zusammenhang mit der Ablagerung und Erosion mächtiger Beckenfüllungen identifiziert werden. Systematische Beziehungen zwischen Verwerfungen, regionalen Diskontinuitäten und verstellten Terrassenflächen verweisen außerdem auf ein generelles Muster beckeninterner Deformation, vermutlich als Folge umfangreicher Beckenerosion und damit verbundenen Änderungen im tektonischen Spannungsfeld der Region. Einige dieser Beobachtungen können anhand veränderter Wasserstoff-Isotopenkonzentrationen vulkanischer Gläser aus der känozoischen Stratigrafie untermauert werden. Die δDg-Werte zeigen zwei wesentliche Trends, die einerseits in Verbindung mit Oberflächenhebung innerhalb des Einzugsgebiets zwischen 6.0 und 3.5 Ma stehen und andererseits mit dem Einsetzen semiarider Bedingungen durch Erreichen eines Schwellenwertes der Topografie der östlich gelegenen Gebirgszüge nach 3.5 Ma erklärt werden können. Tektonisch bedingte Unterbrechung der Sedimentzufuhr aus westlich gelegenen Liefergebieten um 4.2 Ma und die folgende Hinterland-Aridifizierung deuten weiterhin auf die Möglichkeit hin, dass diese Prozesse die Folge eines lateralen Wachstums des Puna-Plateaus sind. Diese Aridifizierung im Bereich der Puna resultierte in einem ineffizienten, endorheischen Entwässerungssystem, das dazu beigetragen hat, das Plateau vor Einschneidung und externer Entwässerung zu bewahren und Reliefgegensätze aufgrund fortgesetzter Beckensedimentation reduzierte. Die diachrone Natur der Hebungen und Beckenbildungen sowie deren Auswirkungen auf das Flusssystem im angrenzenden Vorland wird sowohl durch detaillierte Analysen der Sedimentherkunft und Transportrichtungen als auch Uran-Blei-Datierungen im Lerma- und Metán-Becken (25° S) weiterhin unterstrichen. Das wird besonders deutlich am Beispiel der isolierten Hebung der Sierra de Metán vor etwa 10 Ma, die mehr als 50 km von der aktiven orogenen Front im Westen entfernt liegt. Ab 5 Ma sind typische Lithologien der Puna nicht mehr in den Vorlandsedimenten nachweisbar, welches die weitere Hebung innerhalb der Ostkordillere und die hydrologische Isolation des Angastaco-Beckens in dieser Region dokumentiert. Im Spätpliozän und Quartär ist die Deformation letztlich über das gesamte Vorland verteilt und bis heute aktiv. Um die Beziehungen zwischen tektonisch kontrollierten Veränderungen der Topografie und deren Einfluss auf atmosphärische Prozesse besser zu verstehen, werden in dieser Arbeit weitere altersspezifische Wasserstoff-Isotopendaten vulkanischer Gläser aus dem zerbrochenen Vorland, dem Angastaco-Becken in der Übergangsregion zwischen Ostkordillere und Punarand und anderer intermontaner Becken weiter südlich vorgestellt. Die Resultate dokumentieren ähnliche Höhenlagen der untersuchten Regionen bis ca. 7 Ma, gefolgt von Hebungsprozessen im Bereich des Angastaco-Beckens. Ein Vergleich mit Isotopendaten vom benachbarten Puna-Plateau hilft abrupte δDg-Schwankungen in den intermontanen Daten zu erklären und untermauert die Existenz wiederkehrender Phasen verstärkt konvektiver Wetterlagen im Pliozän, ähnlich heutigen Bedingungen. In dieser Arbeit werden geländeorientierte und geochemische Methoden kombiniert, um Erkenntnisse über die Abläufe von topografiebildenden Deformations- und Hebungsprozessen zu gewinnen und Wechselwirkungen mit der daraus resultierenden Niederschlagsverteilung, Erosion und Sedimentation innerhalb tektonisch aktiver Gebirge zu erforschen. Diese Erkenntnisse sind für ein besseres Verständnis von Subduktionsgebirgen essentiell, besonders hinsichtlich des Deformationsstils und der zeitlich-räumlichen Beziehungen bei der Hebung und Sedimentbeckenbildung. Diese Arbeit weist darüberhinaus auf die Bedeutung stabiler Isotopensysteme zur Beantwortung paläoaltimetrischer Fragestellungen und zur Erforschung von Paläoumweltbedingungen hin und liefert wichtige Erkenntnisse für einen kritischen Umgang mit solchen Daten in anderen Regionen. N2 - Two of the most controversial issues concerning the late Cenozoic evolution of the Andean orogen are the timing of uplift of the intraorogenic Puna plateau and its eastern border, the Eastern Cordillera, and ensuing changes in climatic and surface-process conditions in the intermontane basins of the NW-Argentine Andes. The Eastern Cordillera separates the internally drained, arid Puna from semi-arid intermontane basins and the humid sectors of the Andean broken foreland and the Subandean fold-and-thrust belt to the east. With elevations between 4,000 and 6,000 m the eastern flanks of the Andes form an efficient orographic barrier with westward-increasing elevation and asymmetric rainfall distribution and amount with respect to easterly moisture-bearing winds. This is mirrored by pronounced gradients in the efficiency of surface processes that erode and re-distribute sediment from the uplifting ranges. Although the overall pattern of deformation and uplift in this sector of the southern central Andes shows an eastward migration of deformation, a well-developed deformation front does not exist and uplift and associated erosion and sedimentary processes are highly disparate in space and time. In addition, periodic deformation within intermontane basins, and continued diachronous foreland uplifts associated with the reactivation of inherited basement structures furthermore make a rigorous assessment of the spatiotemporal uplift patterns difficult. This thesis focuses on the tectonic evolution of the Eastern Cordillera of NW Argentina, the depositional history of its intermontane sedimentary basins, and the regional topographic evolution of the eastern flank of the Puna Plateau. The intermontane basins of the Eastern Cordillera and the adjacent morphotectonic provinces of the Sierras Pampeanas and the Santa Bárbara System are akin to reverse fault bounded, filled, and partly coalesced sedimentary basins of the Puna Plateau. In contrast to the Puna basins, however, which still form intact morphologic entities, repeated deformation, erosion, and re-filling have impacted the basins in the Eastern Cordillera. This has resulted in a rich stratigraphy of repeated basin fills, but many of these basins have retained vestiges of their early depositional history that may reach back in time when these areas were still part of a contiguous and undeformed foreland basin. Fortunately, these strata also contain abundant volcanic ashes that are not only important horizons to decipher tectono-sedimentary events through U-Pb geochronology and geochemical correlation, but they also represent terrestrial recorders of the hydrogen-isotope composition of ancient meteoric waters that can be compared to the isotopic composition of modern meteoric water. The ash horizons are thus unique recorders of past environmental conditions and lend themselves to tracking the development of rainfall barriers and tectonically forced climate and environmental change through time. U-Pb zircon geochronology and paleocurrent reconstructions of conglomerate sequences in the Humahuaca Basin of the Eastern Cordillera at 23.5° S suggest that the basin was an integral part of a largely unrestricted depositional system until 4.2 Ma, which subsequently became progressively decoupled from the foreland by range uplifts to the east that forced easterly moisture-bearing winds to precipitate in increasingly eastward locations. Multiple cycles of severed hydrological conditions and drainage re-capture are identified together with these processes that were associated with basin filling and sediment evacuation, respectively. Moreover, systematic relationships among faults, regional unconformities and deformed landforms reveal a general pattern of intra-basin deformation that appears to be linked with basin-internal deformation during or subsequent to episodes of large-scale sediment removal. Some of these observations are supported by variations in the hydrogen stable isotope composition of volcanic glass from the Neogene to Quaternary sedimentary record, which can be related to spatiotemporal changes in topography and associated orographic effects. δDg values in the basin strata reveal two main trends associated with surface uplift in the catchment area between 6.0 and 3.5 Ma and the onset of semiarid conditions in the basin following the attainment of threshold elevations for effective orographic barriers to the east after 3.5 Ma. The disruption of sediment supply from western sources after 4.2 Ma and subsequent hinterland aridification, moreover, emphasize the possibility that these processes were related to lateral orogenic growth of the adjacent Puna Plateau. As a result of the hinterland aridification the regions in the orogen interior have been characterized by an inefficient fluvial system, which in turn has helped maintaining internal drainage conditions, sediment storage, and relief reduction within high-elevation basins. The diachronous nature of basin formation and impacts on the fluvial system in the adjacent broken foreland is underscored by the results of detailed sediment provenance and paleocurrent analyses, as well as U-Pb zircon geochronology in the Lerma and Metán basins at ca. 25° S. This is particularly demonstrated by the isolated uplift of the Metán range at ~10 Ma, which is more than 50 km away from the presently active orogenic front along the eastern Puna margin and the Eastern Cordillera to the west. At about 5 Ma, Puna-sourced sediments disappear from the foreland record, documenting further range uplifts in the Eastern Cordillera and hydrological isolation of the neighboring Angastaco Basin from the foreland. Finally, during the late Pliocene and Quaternary, deformation has been accommodated across the entire foreland and is still active. To elucidate the interactions between tectonically controlled changes in elevation and their impact on atmospheric circulation processes in this region, this thesis provides additional, temporally well-constrained hydrogen stable isotope results of volcanic glass samples from the broken foreland, including the Angastaco Basin, and other intermontane basins farther south. The results suggest similar elevations of intermontane basins and the foreland sectors prior to ca. 7 Ma. In case of the Angastaco Basin the region was affected by km-scale surface uplift of the basin. A comparison with coeval isotope data collected from sedimentary sequences in the Puna plateau explains rapid shifts in the intermontane δDg record and supports the notion of recurring phases of enhanced deep convection during the Pliocene, and thus climatic conditions during the middle to late Pliocene similar to the present day. Combined, field-based and isotope geochemical methods used in this study of the NW-Argentine Andes have thus helped to gain insight into the systematics, rate changes, interactions, and temporal characteristics among tectonically controlled deformation patterns, the build-up of topography impacting atmospheric processes, the distribution of rainfall, and resulting surface processes in a tectonically active mountain belt. Ultimately, this information is essential for a better understanding of the style and the rates at which non-collisional mountain belts evolve, including the development orogenic plateaus and their bordering flanks. The results presented in this study emphasize the importance of stable isotope records for paleoaltimetric and paleoenvironmental studies in mountain belts and furnishes important data for a rigorous interpretation of such records. KW - geology KW - Argentina KW - Eastern Cordillera KW - Puna KW - neotectonics KW - paleoaltimetry KW - stable isotopes KW - volcanic glass KW - U-Pb geochronology KW - Geologie KW - Argentinien KW - Ostkordillere KW - Puna KW - Neotektonik KW - Paläoaltimetrie KW - stabile Isotope KW - vulkanischer Gläser KW - U-Pb Geochronologie Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-82301 ER - TY - THES A1 - Olen, Stephanie M. T1 - Understanding Himalayan denudation at the catchment and orogen scale T1 - Verständnis von Denudation auf regionalem und orogenem Maßstab im Himalaja N2 - Understanding the rates and processes of denudation is key to unraveling the dynamic processes that shape active orogens. This includes decoding the roles of tectonic and climate-driven processes in the long-term evolution of high- mountain landscapes in regions with pronounced tectonic activity and steep climatic and surface-process gradients. Well-constrained denudation rates can be used to address a wide range of geologic problems. In steady-state landscapes, denudation rates are argued to be proportional to tectonic or isostatic uplift rates and provide valuable insight into the tectonic regimes underlying surface denudation. The use of denudation rates based on terrestrial cosmogenic nuclide (TCN) such as 10Beryllium has become a widely-used method to quantify catchment-mean denudation rates. Because such measurements are averaged over timescales of 102 to 105 years, they are not as susceptible to stochastic changes as shorter-term denudation rate estimates (e.g., from suspended sediment measurements) and are therefore considered more reliable for a comparison to long-term processes that operate on geologic timescales. However, the impact of various climatic, biotic, and surface processes on 10Be concentrations and the resultant denudation rates remains unclear and is subject to ongoing discussion. In this thesis, I explore the interaction of climate, the biosphere, topography, and geology in forcing and modulating denudation rates on catchment to orogen scales. There are many processes in highly dynamic active orogens that may effect 10Be concentrations in modern river sands and therefore impact 10Be-derived denudation rates. The calculation of denudation rates from 10Be concentrations, however, requires a suite of simplifying assumptions that may not be valid or applicable in many orogens. I investigate how these processes affect 10Be concentrations in the Arun Valley of Eastern Nepal using 34 new 10Be measurements from the main stem Arun River and its tributaries. The Arun Valley is characterized by steep gradients in climate and topography, with elevations ranging from <100 m asl in the foreland basin to >8,000 asl in the high sectors to the north. This is coupled with a five-fold increase in mean annual rainfall across strike of the orogen. Denudation rates from tributary samples increase toward the core of the orogen, from <0.2 to >5 mm/yr from the Lesser to Higher Himalaya. Very high denudation rates (>2 mm/yr), however, are likely the result of 10Be TCN dilution by surface and climatic processes, such as large landsliding and glaciation, and thus may not be representative of long-term denudation rates. Mainstem Arun denudation rates increase downstream from ~0.2 mm/yr at the border with Tibet to 0.91 mm/yr at its outlet into the Sapt Kosi. However, the downstream 10Be concentrations may not be representative of the entire upstream catchment. Instead, I document evidence for downstream fining of grains from the Tibetan Plateau, resulting in an order-of-magnitude apparent decrease in the measured 10Be concentration. In the Arun Valley and across the Himalaya, topography, climate, and vegetation are strongly interrelated. The observed increase in denudation rates at the transition from the Lesser to Higher Himalaya corresponds to abrupt increases in elevation, hillslope gradient, and mean annual rainfall. Thus, across strike (N-S), it is difficult to decipher the potential impacts of climate and vegetation cover on denudation rates. To further evaluate these relationships I instead took advantage of an along-strike west-to-east increase of mean annual rainfall and vegetation density in the Himalaya. An analysis of 136 published 10Be denudation rates from along strike of the revealed that median denudation rates do not vary considerably along strike of the Himalaya, ~1500 km E-W. However, the range of denudation rates generally decreases from west to east, with more variable denudation rates in the northwestern regions of the orogen than in the eastern regions. This denudation rate variability decreases as vegetation density increases (R=- 0.90), and increases proportionately to the annual seasonality of vegetation (R=0.99). Moreover, rainfall and vegetation modulate the relationship between topographic steepness and denudation rates such that in the wet, densely vegetated regions of the Himalaya, topography responds more linearly to changes in denudation rates than in dry, sparsely vegetated regions, where the response of topographic steepness to denudation rates is highly nonlinear. Understanding the relationships between denudation rates, topography, and climate is also critical for interpreting sedimentary archives. However, there is a lack of understanding of how terrestrial organic matter is transported out of orogens and into sedimentary archives. Plant wax lipid biomarkers derived from terrestrial and marine sedimentary records are commonly used as paleo- hydrologic proxy to help elucidate these problems. I address the issue of how to interpret the biomarker record by using the plant wax isotopic composition of modern suspended and riverbank organic matter to identify and quantify organic matter source regions in the Arun Valley. Topographic and geomorphic analysis, provided by the 10Be catchment-mean denudation rates, reveals that a combination of topographic steepness (as a proxy for denudation) and vegetation density is required to capture organic matter sourcing in the Arun River. My studies highlight the importance of a rigorous and careful interpretation of denudation rates in tectonically active orogens that are furthermore characterized by strong climatic and biotic gradients. Unambiguous information about these issues is critical for correctly decoding and interpreting the possible tectonic and climatic forces that drive erosion and denudation, and the manifestation of the erosion products in sedimentary archives. N2 - Schlüssel im Verständnis der dynamischen Prozesse in aktiven Orogenen ist die Kenntnis der Abtragungsraten und -prozesse. Eine breite Auswahl geologischer Fragen können mit well-constrained Abtragungsraten erörtert werden. Sind Landschaften im Gleichgewicht so sind die Denudationsraten proportional zu den tektonischen und isostatischen Hebungsraten und geben somit wichtige Hinweise über die tektonischen Eigenschaften der Region. Eine weit verbreitete und etablierte Methode zur Bestimmung mittlerer Denudationsraten eines bestimmten Einzugsgebietes ist Beryllium-10, ein terrestrisches kosmogenes Nuklid (10Be TCN). 10Be TCN Messungen stellen durchschnittliche Abtragungsraten über einen Zeitraum von 10^2 – 10^5 Jahren dar und sind daher weniger verletzlich gegenüber stochastischen Änderungen wie Erosionsraten, die über einen kurzen Zeitraum ermittelt werden z.B. in Suspension. Sie sind daher zuverlässig einsetzbar um langfristige Prozesse zu vergleichen. Allerdings ist unklar welche Einfluss verschiedene klimatische, biologische oder erdoberflächen Prozesse auf die 10Be Konzentration ausüben und somit auch auf die resultierenden Abtragungsraten. In dieser Doktorarbeit, setze ich mich mit dem Zwischenspiel von Klima, Biosphäre, Topographie und Geologie auseinander und dem Einfluss, den sie auf Abtragungsraten ausüben sowohl auf regionalem wie auch auf orogenem Maßstab. In hoch dynamischen aktiven Gebirgen gibt es viele Prozesse, welche die 10Be Konzentration in heutigen Flusssanden beeinflussen und damit auch die, mittels 10Be berechneten, Abtragungsraten. Um diese Raten mittels 10Be Konzentrationen zu berechnen benötigen wir einige vereinfachende Annahmen, die möglicherweise in anderen Regionen keine Gültigkeit haben. Ich untersuche den Einfluss dieser Prozesse auf die 10Be Konzentration. Dazu haben wir im Arun Tal im Osten Nepals 34 neue 10Be Konzentrationen des Arun Flusses und seinen Zuflüssen untersucht. Charakteristisch für das Arun Tal sind die steilen Gradienten im Klima mit einem fünffachen Anstieg des mittleren jährlichen Regenfalls über das Orogens, und in der Topographie mit Höhen von weniger als 100 m über Meer im Vorlandbecken bis über 8000 m über Meer im Gebirge. Die Abtragungsraten der Proben der Zuflüsse nehmen gegen das Zentrum des Gebirges von weniger <0.2 zu mehr als >5 mm/yr zu d.h. ansteigend vom Lesser zum Higher Himalaya. Sehr hohe Denudationsraten (> 2mm/yr) können durch erdoberflächen und klimatische Prozesse verwässert werden z. B. grosse Erdrutsche und Vergletscherungen, und sind daher nicht unbedingt repräsentativ für langzeitliche Abtragungsraten. Im Arun nehmen die Raten des Hauptflusses flussabwärts von 0.2 mm/yr im Bereich der Grenze zu Tibet auf 0.91 mm/yr am Ausfluss in Sapt Kosi zu. Es ist möglich, dass diese 10Be Konzentrationen nicht das vollständige flussauswärtsliegende Einzugsgebiet repräsentieren. Stattdessen lege ich dar wie sich die Korngrösse ab dem tibetischen Plateau verfeinert und dazu führt, dass die 10Be Konzentrationen offenkundig im Bereich einer Grössenordnung abnehmen. Im Arun Tal und sowie über den ganzen Himalaja sind Topographie, Klima und Vegetation sehr stark miteinander verbunden. Das Ansteigen der Denudationsraten im Übergang vom Lesser zum Higher Himalaya stimmt mit dem abrupten Ansteigen der Höhe, des Hangneigungsgradienten und des mittleren jährlichen Regenfalles überein. Es ist schwierig die möglichen Einflüssen von Klima und der Vegetationsdichte auf die Abtragungsraten über das Orogen hinweg (N-S) zu entziffern. Stattdessen, nutzen wir den Vorteil der, von West nach Ost, parallel zum Himalaja verlaufenden, Zunahme des mittleren jährlichen Regenfalles und der Vegetationsdichte. Eine Analyse 136 publizierter 10Be TCN Abtragungsraten entlang des Gebirges, zeigt dass die im Streichen liegenden mittleren Denudationsraten (ca. 1500 km Ost-West) nicht deutlich variieren. Generell sinkt die Wertebereich der Denudationsraten vom Westen gegen Osten, wobei in den nordwestlichen Regionen des Himalajas variablere Abtragungsraten vorherrschen als in den östlichen Regionen. Diese Vielfalt in den Denudationsraten sinkt mit steigender Vegetationsdichte (R=-0.90) und steigt proportional zur (jährlichen) Saisonalität der Vegetation (R=0.99). Vielmehr noch wird das Verhältnis zwischen der topographischen Steilheit und den Abtragungsraten durch Regen und Vegetation beeinflusst z. B. in feuchten Gebieten mit starker Vegetation reagiert die Topographie linearer auf Wechsel in den Abtragungsraten als in trockenen, kaum bewachsenen Regionen, wo die Reaktion der topographischen Steilheit auf die Denudationsraten äusserst nicht-linear ist. Das Verständnis der Beziehung zwischen Erosion, Topographie und Klima ist auch entscheidend für die Interpretation von Sedimentarchiven. Unser Wissen über die Repräsentativität von terrestrisches organisches Material, abgelagert in z.B. Flussdeltas, für die Einzugsgebiete der entsprechenden Flüsse, ist nach wie vor nur vage. Dennoch sind Blattwachse höherer Landpflanzen, extrahiert aus terrestrischen und marinen Sedimenten, ein häufig verwendeter paläohydrologischer Proxy. Im Rahmen dieser Arbeit nutzen wir die Isotopenzusammensetzung von Pflanzenwachsen aus Suspensionsmaterial und aus Flusssedimenten als Herkunftsmarker und zur Quantifizierung des organischen Materials im Arun Tal. Die Analyse von Vegetationsdichte und Regenverteilung in Kombination mit Abtragungsraten des Einzugsgebietes, welche durch die mittleren 10Be-Erosionsraten gestützt werden, zeigen, dass das Vorhandensein dichter Vegetation ein zwar notwendiges, aber nicht hinreichendes Kriterium für hohen OM-Export ist. Vielmehr können wir zeigen, dass nur eine Kombination aus dichter Vegetationsdecke und Erosion zu hohem OM-Export führt. Für die Interpretation entspechender Archive bedeutet das, dass sie im Wesentlichen jene Bereiche des Einzugsgebietes repräsentieren, welche durch hohe Pflanzendichte und starke Erosion charakterisiert sind. Diese Studien belegen wie wichtig es ist die Abtragungsraten in aktiven Gebirgen umfassend zu verstehen. Für die Interpretation kann dieses Verständnis der möglichen tektonischen und klimatischen Gewalten, welche Erosion und Abtragung steuern, und auch das Verständnis der Sedimentarchive aus den Gebirgen stammend, entscheidend sein. KW - geology KW - geomorphology KW - Himalaya KW - Geologie KW - Geomorphologie KW - Himalaja Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-91423 ER - TY - THES A1 - Lauer-Dünkelberg, Gregor T1 - Extensional deformation and landscape evolution of the Central Andean Plateau T1 - Dehnungsdeformation und Landschaftsentwicklung des zentralen Andenplateaus N2 - Mountain ranges can fundamentally influence the physical and and chemical processes that shape Earths’ surface. With elevations of up to several kilometers they create climatic enclaves by interacting with atmospheric circulation and hydrologic systems, thus leading to a specific distribution of flora and fauna. As a result, the interiors of many Cenozoic mountain ranges are characterized by an arid climate, internally drained and sediment-filled basins, as well as unique ecosystems that are isolated from the adjacent humid, low-elevation regions along their flanks and forelands. These high-altitude interiors of orogens are often characterized by low relief and coalesced sedimentary basins, commonly referred to as plateaus, tectono-geomorphic entities that result from the complex interactions between mantle-driven geological and tectonic conditions and superposed atmospheric and hydrological processes. The efficiency of these processes and the fate of orogenic plateaus is therefore closely tied to the balance of constructive and destructive processes – tectonic uplift and erosion, respectively. In numerous geological studies it has been shown that mountain ranges are delicate systems that can be obliterated by an imbalance of these underlying forces. As such, Cenozoic mountain ranges might not persist on long geological timescales and will be destroyed by erosion or tectonic collapse. Advancing headward erosion of river systems that drain the flanks of the orogen may ultimately sever the internal drainage conditions and the maintenance of storage of sediments within the plateau, leading to destruction of plateau morphology and connectivity with the foreland. Orogenic collapse may be associated with the changeover from a compressional stress field with regional shortening and topographic growth, to a tensional stress field with regional extensional deformation and ensuing incision of the plateau. While the latter case is well-expressed by active extensional faults in the interior parts of the Tibetan Plateau and the Himalaya, for example, the former has been attributed to have breached the internally drained areas of the high-elevation sectors of the Iranian Plateau. In the case of the Andes of South America and their internally drained Altiplano-Puna Plateau, signs of both processes have been previously described. However, in the orogenic collapse scenario the nature of the extensional structures had been primarily investigated in the northern and southern terminations of the plateau; in some cases, the extensional faults were even regarded to be inactive. After a shallow earthquake in 2020 within the Eastern Cordillera of Argentina that was associated with extensional deformation, the state of active deformation and the character of the stress field in the central parts of the plateau received renewed interest to explain a series of extensional structures in the northernmost sectors of the plateau in north-western Argentina. This study addresses (1) the issue of tectonic orogenic collapse of the Andes and the destruction of plateau morphology by studying the fill and erosion history of the central eastern Andean Plateau using sedimentological and geochronological data and (2) the kinematics, timing and magnitude of extensional structures that form well-expressed fault scarps in sediments of the regional San Juan del Oro surface, which is an integral part of the Andean Plateau and adjacent morphotectonic provinces to the east. Importantly, sediment properties and depositional ages document that the San Juan del Oro Surface was not part of the internally-drained Andean Plateau, but rather associated with a foreland-directed drainage system, which was modified by the Andean orogeny and that became successively incorporated into the orogen by the eastward-migration of the Andean deformation front during late Miocene – Pliocene time. Structural and geomorphic observations within the plateau indicate that extensional processes must have been repeatedly active between the late Miocene and Holocene supporting the notion of plateau-wide extensional processes, potentially associated with Mw ~ 7 earthquakes. The close relationship between extensional joints and fault orientations underscores that 3 was oriented horizontally in NW-SE direction and 1 was vertical. This unambiguously documents that the observed deformation is related to gravitational forces that drive the orogenic collapse of the plateau. Applied geochronological analyses suggest that normal faulting in the northern Puna was active at about 3 Ma, based on paired cosmogenic nuclide dating of sediment fill units. Possibly due to regional normal faulting the drainage system within the plateau was modified, promoting fluvial incision. N2 - Gebirge beeinflussen grundlegend die physikalischen und chemischen Prozesse, die die Oberfläche der Erde formen. Mit Höhen von bis zu mehreren Tausend Metern können sie als topografische Barrieren fungieren, die mit atmosphärischen Zirkulationen und hydrologischen Systemen wechselwirken, klimatische Enklaven schaffen und dadurch die Verbreitung von Flora und Fauna einschränken. Infolgedessen sind die inneren Teile vieler känozoischer Gebirge durch geschlossene Beckenstrukturen gekennzeichnet, die einzigartige, von den niedriger gelegenen Bereichen des Vorlands isolierte Ökosysteme beherbergen. Diese durch niedriges Relief geprägte orographische Sektoren werden als Plateaus bezeichnet - das Ergebnis komplexer Wechselwirkungen geologischer, hydrologischer und atmosphärischer Prozesse. Das Fortbestehen solcher orogenen Plateaus ist daher an das Gleichgewicht zwischen den konstruktiven und destruktiven Prozessen, tektonischer Hebung und Erosion gebunden. Aus geologischen Studien geht hervor, dass Gebirgszüge fragile Systeme sind, die durch ein Ungleichgewicht dieser zugrunde liegenden Kräfte kollabieren können. Daher erscheint es unumgänglich, dass moderne Gebirge auf geologischen Zeitskalen nicht überdauern werden und voraussichtlich dem Zahn der Zeit zum Opfer fallen. Viele Studien haben sich bereits mit der Aufgabe befasst, den momentanen Zustand känozoischer Gebirge zu erforschen, um zu entschlüsseln, ob sie bereits in eine Einebnungsphase übergegangen sind. Eine solche Einebnung kann auf zwei oberflächliche Anzeichen zurückgeführt werden: i) die fortschreitende Erosion durch Flusssysteme und ii) das Vorhandensein von Extensionsstrukturen, die sich entgegen des kompressiven Spannungsfelds durch Gravitationskräfte formen. Solche Strukturen wurden bereits im Inneren des tibetischen Plateaus des zentralasiatischen Himalaya beschrieben, während eine plateauweite Einschneidung durch Flusssysteme die intern entwässerten Gebiete der hoch gelegenen Sektoren des iranischen Plateaus beobachtet wurde. Im Falle der südamerikanischen Anden und ihres intern entwässerten Altiplano-Puna-Plateaus wurden bereits Anzeichen beider Prozesse beschrieben. Im Szenario des orogenen Kollapses wurden Dehnungsstrukturen jedoch hauptsächlich an den nördlichen und südlichen Grenzen des Plateaus untersucht; in einigen Fällen wurden diese tektonischen Verwerfungen als inaktiv kategorisiert. Nach einem flachen Erdbeben im Jahr 2020 in der Ostkordillere Argentiniens, das mit solch einer Dehnungsstruktur in Verbindung gebracht wurde, weckte die Frage nach dem Zustand des aktiven Spannungsfeldes und der damit einhergehenden Deformation in den zentralen Teilen der Anden wieder neues Interesse. Die Analyse solcher Strukturen und die daraus resultierenden Erkenntnisse, würden helfen die quartäre Deformation in den hoch gelegenen Gebieten der Anden zu erklären. Diese Dissertation befasst sich daher mit (1) der Frage des tektonisch-orogenen Zusammenbruchs der Anden und der Einschneidung in die Plateaumorphologie, indem die Auffüllungs- und Erosionsgeschichte des zentralen östlichen Andenplateaus anhand von sedimentologischen und geochronologischen Daten untersucht wird, und (2) mit der Kinematik, dem zeitlichen Ablauf und dem Ausmaß von Dehnungsdeformation, die ausgeprägte Geländestufen in den sölig gelagerten Sedimenten der regionalen San Juan del Oro-Oberfläche formte, die wiederum ein integraler Bestandteil des Andenplateaus und der angrenzenden morphotektonischen Provinzen im Osten ist. Die Eigenschaften der beschriebenen Sedimente sowie deren Ablagerungsalter belegen, dass die San Juan del Oro-Oberfläche nicht Teil des intern entwässerten Andenplateaus ist, sondern vielmehr mit einem vorgelagerten Entwässerungssystem verbunden ist, das durch die Anden-Orogenese und die Ostwärtsbewegung der Deformationsfront im späten Miozän bis Pliozän sukzessive in das Orogen integriert wurde. Strukturelle und geomorphologische Beobachtungen innerhalb des Plateaus deuten darauf hin, dass eine tektonische Abschiebungen zwischen dem späten Miozän und dem Holozän wiederholt aktiv gewesen sein müssen, und möglicherweise mit Erdbeben der Stärke Mw ~ 7 in Verbindung standen. Die geometrische Beziehung zwischen Dehnungsklüften und dem Streichen der beobachteten Verwerfungen deutet darauf hin, dass die geringste Normalspannung (σ3) horizontal in NW-SE-Richtung und die maximale Normalspannung (σ1) vertikal orientiert war. Dies ist ein eindeutiger Beleg dafür, dass die beobachtete Deformation mit Gravitationskräften zusammenhängt, die den orogenen Kollaps des Plateaus vorantreiben. Geochronologische Daten deuten darauf hin, dass die Abschiebungen in der nördlichen Puna vor ca. 3 Ma aktiv waren. Möglicherweise wurde dadurch auch das Entwässerungssystem innerhalb des Plateaus beeinflusst, was eine fluviale Einschneidung begünstigte und den Zerfall des Plateaus vorantreibt. KW - Andes KW - plateau KW - extension KW - tectonics KW - normal faulting KW - geodynamics KW - geology KW - Anden KW - Dehnungsdeformation KW - Geodynamik KW - Geologie KW - Verwerfungen KW - Hochplateau KW - Tektonik KW - surface exposure dating KW - uranium-lead-dating KW - Remote sensing KW - paleoseismology KW - Oberflächenexpositionsdatierung KW - Uran-Blei-Datierung KW - Fernerkundung KW - Paleoseismologie Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-617593 ER - TY - THES A1 - Konrad-Schmolke, Matthias T1 - Thermodynamic and geochemical modeling in metamorphic geology T1 - Thermodynamische und geochemische Modellierungen in metamorpher Geologie N2 - Quantitative thermodynamic and geochemical modeling is today applied in a variety of geological environments from the petrogenesis of igneous rocks to the oceanic realm. Thermodynamic calculations are used, for example, to get better insight into lithosphere dynamics, to constrain melting processes in crust and mantle as well as to study fluid-rock interaction. The development of thermodynamic databases and computer programs to calculate equilibrium phase diagrams have greatly advanced our ability to model geodynamic processes from subduction to orogenesis. However, a well-known problem is that despite its broad application the use and interpretation of thermodynamic models applied to natural rocks is far from straightforward. For example, chemical disequilibrium and/or unknown rock properties, such as fluid activities, complicate the application of equilibrium thermodynamics. One major aspect of the publications presented in this Habilitationsschrift are new approaches to unravel dynamic and chemical histories of rocks that include applications to chemically open system behaviour. This approach is especially important in rocks that are affected by element fractionation due to fractional crystallisation and fluid loss during dehydration reactions. Furthermore, chemically open system behaviour has also to be considered for studying fluid-rock interaction processes and for extracting information from compositionally zoned metamorphic minerals. In this Habilitationsschrift several publications are presented where I incorporate such open system behaviour in the forward models by incrementing the calculations and considering changing reacting rock compositions during metamorphism. I apply thermodynamic forward modelling incorporating the effects of element fractionation in a variety of geodynamic and geochemical applications in order to better understand lithosphere dynamics and mass transfer in solid rocks. In three of the presented publications I combine thermodynamic forward models with trace element calculations in order to enlarge the application of geochemical numerical forward modeling. In these publications a combination of thermodynamic and trace element forward modeling is used to study and quantify processes in metamorphic petrology at spatial scales from µm to km. In the thermodynamic forward models I utilize Gibbs energy minimization to quantify mineralogical changes along a reaction path of a chemically open fluid/rock system. These results are combined with mass balanced trace element calculations to determine the trace element distribution between rock and melt/fluid during the metamorphic evolution. Thus, effects of mineral reactions, fluid-rock interaction and element transport in metamorphic rocks on the trace element and isotopic composition of minerals, rocks and percolating fluids or melts can be predicted. One of the included publications shows that trace element growth zonations in metamorphic garnet porphyroblasts can be used to get crucial information about the reaction path of the investigated sample. In order to interpret the major and trace element distribution and zoning patterns in terms of the reaction history of the samples, we combined thermodynamic forward models with mass-balance rare earth element calculations. Such combined thermodynamic and mass-balance calculations of the rare earth element distribution among the modelled stable phases yielded characteristic zonation patterns in garnet that closely resemble those in the natural samples. We can show in that paper that garnet growth and trace element incorporation occurred in near thermodynamic equilibrium with matrix phases during subduction and that the rare earth element patterns in garnet exhibit distinct enrichment zones that fingerprint the minerals involved in the garnet-forming reactions. In two of the presented publications I illustrate the capacities of combined thermodynamic-geochemical modeling based on examples relevant to mass transfer in subduction zones. The first example focuses on fluid-rock interaction in and around a blueschist-facies shear zone in felsic gneisses, where fluid-induced mineral reactions and their effects on boron (B) concentrations and isotopic compositions in white mica are modeled. In the second example, fluid release from a subducted slab and associated transport of B and variations in B concentrations and isotopic compositions in liberated fluids and residual rocks are modeled. I show that, combined with experimental data on elemental partitioning and isotopic fractionation, thermodynamic forward modeling unfolds enormous capacities that are far from exhausted. In my publications presented in this Habilitationsschrift I compare the modeled results to geochemical data of natural minerals and rocks and demonstrate that the combination of thermodynamic and geochemical models enables quantification of metamorphic processes and insights into element cycling that would have been unattainable so far. Thus, the contributions to the science community presented in this Habilitatonsschrift concern the fields of petrology, geochemistry, geochronology but also ore geology that all use thermodynamic and geochemical models to solve various problems related to geo-materials. N2 - Große Teile des Planeten auf dem wir leben sind für direkte Beobachtungen unzugänglich. Dieser Umstand umfasst nicht nur eine räumliche Komponente, so wie dies z.B. in den Tiefseegräben der Ozeane oder im Erdinneren der Fall ist sondern auch eine zeitliche Komponente, da viele für uns lebenswichtigen Prozesse, wie z.B. die Verschiebung der Kontinentalplatten, in für uns kaum beobachtbaren Raten stattfinden. Daher sind sogenannte Proxies, d.h. Archive in denen Informationen über die untersuchten Prozesse aus der längeren Vergangenheit gespeichert sind für die Geowissenschaften von sehr großer Bedeutung. Der wohl bekannteste Proxy ist zur Zeit CO2, dessen Konzentration in der Atmosphäre mit der Lufttemperatur korreliert wird. Als Archive für diesen Proxy dienen in der Regel Luftblasen in den Schichten der Eisschilde. Ist der Prozess bekannt, der den Proxy mit der gesuchten Information verbindet, im Falle von CO2 ist das der weitgehend bekannte sogenannte Treibhaus-Effekt, der die Oberflächentemperatur auf der Erde kontrolliert, kann man aus den Daten der Vergangenheit auf die Zukunft rückschließen. Wichtig ist dabei natürlich, dass der Prozess, der den Proxy kontrolliert genau bekannt ist, denn sonst führen dessen Messungen und die Interpretation der Daten zu falschen Rückschlüssen. In der von mir vorgelegten Habilitationsschrift geht es um Prozesse, die bestimmte Proxies in Gesteinen kontrollieren und darum, aus den Messungen der Proxies Rückschlüsse über Prozesse machen zu können, die weit außerhalb unseres direkt beobachtbaren Raumes liegen. Bei den untersuchten Prozessen handelt es sich um die sogenannte Lithosphärendynamik, die Bewegung der Gesteine in den obersten etwa 100km unseres Planeten. Diese Dynamik und die damit verbundenen Massenbewegungen sind weder räumlich noch zeitlich gut zu beobachten, die Prozesse laufen meist in größeren Tiefen und im Maßstab von Millionen von Jahren ab, sind aber dennoch für die Menschen von größter Bedeutung, da sie für Erdbeben, Vulkanausbrüche aber auch für die Lagerstättenbildung verantwortlich sind. Bewegungen der Gesteine in der Lithosphäre gehen mit Druck- und Temperaturänderungen in den Gesteinen einher. Die Gesteine versuchen sich diesen Änderungen anzupassen, was durch chemische Veränderungen in den Mineralen aus denen die Gesteine bestehen, geschieht. Solche Veränderungen infolge der Anpassung an sich ändernde Umweltbedingungen sind uns allen bekannt: Eis schmilzt, wenn die Umgebungstemperatur über dem Gefrierpunkt liegt und die Kraft, die wir im Verbrennungsmotor aus der chemischen Reaktion zwischen Benzin und Luft gewinnen setzen wir in Bewegung um. Die Berechnung solcher chemischer Anpassungen an sich ändernde Umgebungsbedingungen erfolgt mit Hilfe der Thermodynamik. Mit thermodynamischen Modellen können wir voraussagen welche Veränderungen in einem chemischen System auftreten, wenn sich die Umgebungsbedingungen ändern. Im Bezug auf Gesteine bedeutet dies, dass wir die chemische Zusammensetzung der Minerale bei bestimmten Druck und Temperaturbedingungen voraussagen können und umgekehrt auch aus der chemischen Zusammensetzung der Minerale auf die Druck- und Temperaturbedingungen bei ihrer Entstehung rückschließen können. Einige Minerale, wie z.B. Granat oder Feldspat weisen in Gesteinen oft eine chemische Zonierung auf, d.h. wie die Jahresringe in einem Baum haben solche Minerale konzentrische Anwachssäume, die sich in ihrer chemischen Zusammensetzung unterscheiden und so ein Archiv über die erfahrenen Druck- und Temperaturveränderungen in der Geschichte des Gesteins darstellen. Zur Interpretation dieser Zonierungen bedarf es komplexer thermodynamischer Modellierungen mit denen ich mich in den hier zusammengefassten publizierten Arbeiten beschäftigt habe. In den in dieser Habilitationsschrift zusammengefassten Arbeiten arbeite ich vor allem heraus, dass sowohl die Haupt- als auch die Spurenelementzonierungen in den Mineralen Granat und Hellglimmer hervorragende Indikatoren für Elementtransportprozesse in den Gesteinen sind. In Granat können Haupt- und Seltenerdelementzonierungen herangezogen werden um Elementfraktionierungsprozesse während der Gesteinsentwicklung zu detektieren. In den Hellglimmern ist die Konzentration und isotopische Zusammensetzung von Bor indikativ für eine Fluid-Gesteins-Wechselwirkung. Ich zeige, dass mit von mir und meinen Co-Autoren entwickelten thermodynamisch-geochemischen Modellen solche Elementtransportprozesse quantifiziert werden können. In den hier vorgelegten Arbeiten verwende ich solche numerischen Modelle um Prozesse vom µm bis km Maßstab zu quantifizieren. KW - geology KW - petrology KW - thermodynamic modelling KW - Geologie KW - Petrologie KW - thermodynamische Modellierungen Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-101805 ER - TY - THES A1 - Eugster, Patricia T1 - Landscape evolution in the western Indian Himalaya since the Miocene T1 - Landschaftsentwicklung im westlichen indischen Himalaja seit dem Miozän N2 - The Himalayan arc stretches >2500 km from east to west at the southern edge of the Tibetan Plateau, representing one of the most important Cenozoic continent-continent collisional orogens. Internal deformation processes and climatic factors, which drive weathering, denudation, and transport, influence the growth and erosion of the orogen. During glacial times wet-based glaciers sculpted the mountain range and left overdeepend and U-shaped valleys, which were backfilled during interglacial times with paraglacial sediments over several cycles. These sediments partially still remain within the valleys because of insufficient evacuation capabilities into the foreland. Climatic processes overlay long-term tectonic processes responsible for uplift and exhumation caused by convergence. Possible processes accommodating convergence within the orogenic wedge along the main Himalayan faults, which divide the range into four major lithologic units, are debated. In this context, the identification of processes shaping the Earth’s surface on short- and on long-term are crucial to understand the growth of the orogen and implications for landscape development in various sectors along the arc. This thesis focuses on both surface and tectonic processes that shape the landscape in the western Indian Himalaya since late Miocene. In my first study, I dated well-preserved glacially polished bedrock on high-elevated ridges and valley walls in the upper of the Chandra Valley the by means of 10Be terrestrial cosmogenic radionuclides (TCN). I used these ages and mapped glacial features to reconstruct the extent and timing of Pleistocene glaciation at the southern front of the Himalaya. I was able to reconstruct an extensive valley glacier of ~200 km length and >1000 m thickness. Deglaciation of the Chandra Valley glacier started subsequently to insolation increase on the Northern Hemisphere and thus responded to temperature increase. I showed that the timing this deglaciation onset was coeval with retreat of further midlatitude glaciers on the Northern and Southern Hemispheres. These comparisons also showed that the post-LGM deglaciation very rapid, occurred within a few thousand years, and was nearly finished prior to the Bølling/Allerød interstadial. A second study (co-authorship) investigates how glacial advances and retreats in high mountain environments impact the landscape. By 10Be TCN dating and geomorphic mapping, we obtained maximal length and height of the Siachen Glacier within the Nubra Valley. Today the Shyok and Nubra confluence is backfilled with sedimentary deposits, which are attributed to the valley blocking of the Siachen Glacier 900 m above the present day river level. A glacial dam of the Siachen Glacier blocked the Shyok River and lead to the evolution of a more than 20 km long lake. Fluvial and lacustrine deposits in the valley document alternating draining and filling cycles of the lake dammed by the Siachen Glacier. In this study, we can show that glacial incision was outpacing fluvial incision. In the third study, which spans the million-year timescale, I focus on exhumation and erosion within the Chandra and Beas valleys. In this study the position and discussed possible reasons of rapidly exhuming rocks, several 100-km away from one of the main Himalayan faults (MFT) using Apatite Fission Track (AFT) thermochronometry. The newly gained AFT ages indicate rapid exhumation and confirm earlier studies in the Chandra Valley. I assume that the rapid exhumation is most likely related to uplift over subsurface structures. I tested this hypothesis by combining further low-temperature thermochronometers from areas east and west of my study area. By comparing two transects, each parallel to the Beas/Chandra Valley transect, I demonstrate similarities in the exhumation pattern to transects across the Sutlej region, and strong dissimilarities in the transect crossing the Dhauladar Range. I conclude that the belt of rapid exhumation terminates at the western end of the Kullu-Rampur window. Therewith, I corroborate earlier studies suggesting changes in exhumation behavior in the western Himalaya. Furthermore, I discussed several causes responsible for the pronounced change in exhumation patterns along strike: 1) the role of inherited pre-collisional features such as the Proterozoic sedimentary cover of the Indian basement, former ridges and geological structures, and 2) the variability of convergence rates along the Himalayan arc due to an increased oblique component towards the syntaxis. The combination of field observations (geological and geomorphological mapping) and methods to constrain short- and long-term processes (10Be, AFT) help to understand the role of the individual contributors to exhumation and erosion in the western Indian Himalaya. With the results of this thesis, I emphasize the importance of glacial and tectonic processes in shaping the landscape by driving exhumation and erosion in the studied areas. N2 - Der Himalaja, eines der wichtigsten känozoischen Kontinent-Kontinent Kollisionsgebirgen, erstreckt sich über 2500 km entlang des südlichen Randes des Tibetischen Plateaus von Ost nach West. Die Gebirgsbildung wird durch interne Deformationsprozesse und klimatische Faktoren, welche auf Verwitterung, Abtragung und Transport wirken, beeinflusst. In einem Zyklus von Eis- und Warmzeiten wurde die Landschaft durch Gletscher geformt. U-Täler sind noch heute erhaltene Spuren der Gletscher, die in den Warmzeiten durch abgetragene Sedimente verfüllt wurden. Diese Sedimente befinden sich teilweise bis heute in diesen übertieften Tälern, weil es an Kapazitäten zur Ausräumung der Täler ins Vorland mangelt. Die kurz-skaligen klimatischen Prozesse überlagern sich mit langzeitlichen tektonischen Prozessen wie Hebung und Exhumation, die durch Konvergenz verursacht werden. Im Zusammenhang mit dem Gebirgswachstum ist es entscheidend die Prozesse, welche die Erdoberfläche sowohl über kurze wie auch über längere Zeiträume formen zu bestimmen und damit auch deren Auswirkungen auf die Landschaftsentwicklung in den einzelnen Abschnitten des Gebirgsbogens. Diese Dissertation fokussiert auf tektonische und Erdoberflächenprozesse, welche den westlichen indischen Himalaja seit dem Miozän geprägt und beeinflusst haben. In der ersten Studie, habe ich im oberen Chandratal mittels 10Be terrestrischen kosmogenen Nukliden (TCN) gut erhaltene vom Gletscher geschliffene und polierte Gesteinsoberflächen auf höher gelegenen Bergrücken und entlang der Talseiten datiert. Basierend auf diesen Altern und kartierten glazialen Landformen habe ich nicht nur die Ausdehnung, sondern auch den Zeitpunkt einer Vergletscherung an der südlichen Front des Himalajas rekonstruiert. Dieser rekonstruierte Gletscher hat im Chandratal eine maximale Länge von ~200 km und >1000 m Dicke erreicht. Die Enteisung des Chandratales folgte dem Anstieg der Sonneneinstrahlung und somit der Temperaturerwärmung auf der nördlichen Hemisphäre. Der Zeitpunkt des Enteisungsbeginns stimmt mit dem Rückgang weiterer Gletscher der mittleren Breiten auf der südlichen wie auch auf der nördlichen Hemisphäre überein. Diese Vergleiche zeigen auch, dass die Enteisung der letzteiszeitlichen Vergletscherung schon vor dem Bølling/Allerød Stadium nahezu abgeschlossen war. In einer zweiten Studie (Ko-Autorenschaft) wird untersucht, wie Gletscher die Erdoberfläche formen und wie Gletschervorstöße und -rückzüge die Landschaft in alpinen Regionen beeinflussen. Die maximale Länge des Siachen Gletschers im Nubratal wurde auf mehr als 180 km rekonstruiert. Heute ist der Zusammenfluss der Flüsse Shyok und Nubra mit Sedimenten verfüllt, deren Ablagerung mit einer Blockierung des Tales durch den Siachen Gletscher bis zu 900 m über der heutigen Flusshöhe zusammenhängen. Demzufolge, staute der Siachen Gletscher den Fluss Shyok. Fluviatile und lakustrine Ablagerungen im Tal dokumentieren sich wechselnde Entleerungs- und Auffüllungszyklen dieses Gletscherstausees. In dieser Studie, konnte ebenso gezeigt werden, dass fluviatile Erosion durch die glaziale Erosion überholt wird. Über den längeren Zeitraum (Jahrmillionen) fokussiere ich auf Exhumation und Erosion in den Tälern Chandra und Beas. In dieser dritten Studie war es mir möglich mittels Apatit-Spaltspurdatierung (AFT) die Lage und Gründe der schnellen Exhumation in diesem Bereich, einige hundert Kilometer entfernt einer der Hauptstörungen des Himalajas (MFT), zu beschreiben. Die neuen AFT Alter deuten auf schnelle Exhumation hin und bestätigen frühere Studien aus dem Chandratal. Ich vermute, dass diese schnelle Exhumation mit einer Bewegung über eine krustale Rampe im Zusammenhang steht, welche auch im östlich anschließenden Sutlej Tal ausgeprägt ist. Diese Hypothese wurde durch die Kombination weiterer tieftemperatur Thermochronometer aus benachbarten Gebieten untersucht. Durch den Vergleich zweier Profile, welche parallel zum Chandra/Beas-Profil laufen wurden im östliche gelegenen Sutlej Gebiet ähnliche Exhumationsmuster gefunden. Daraus schließe ich, das Ende es "rapid exhumation belt" westlich des Kullu-Rampur Fensters im Beastal und bestätige damit auch frühere Studien. Im Weiteren wurden verschiedene Gründe wie ehemalige prä-kollisionale Strukturen und Sedimentbecken oder die abnehmende frontale Konvergenz gegen Westen diskutiert, welche sich Möglicherweise verantwortlich zeichnen für den Wechsel des Exhumationsverhaltens entlang des Streichens des Himalaja. Die Kombination aus Feldbeobachtungen (geologische und geomorphologische Kartierung) und Methoden, die über kurze und längere Zeiträume Prozesse auflösen (10Be, AFT), unterstützen die Erkenntnisse über die Rollenverteilung der einzelnen Akteure bezüglich Exhumation und Erosion im westlichen indischen Himalaja. Die Ergebnisse dieser Doktorarbeit heben die Wichtigkeit glazialer als auch tektonischer Prozesse als Steuerelemente von Exhumation und Erosion im Studiengebiet hervor. KW - Geologie KW - Himalaja KW - Thermochronologie KW - kosmogene Nuklide KW - Gletscher KW - geology KW - Himalaya KW - thermochronology KW - cosmogenic nuclides KW - glaciers Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-420329 ER - TY - THES A1 - Bergner, Andreas G. N. T1 - Lake-level fluctuations and Late Quaternary climate change in the Central Kenya Rift N2 - Diese Arbeit beschäftigt sich mit der Rekonstruktion von Klima in historischen Zeiten im tropischen Ostafrika. Nach einer Übersicht über die heutigen klimatischen Bedingungen der Tropen und den Besonderheiten des ostafrikanischen Klimas, werden die Möglichkeiten der Klimarekonstruktion anhand von Seesedimenten diskutiert. Es zeigt sich, dass die hoch gelegenen Seen des Zentralen Keniarifts, als Teil des Ostafrikanischen Grabensystems, besonders geeignete Klimaarchive darstellen, da sie sensibel auf klimatische Veränderungen reagieren. Veränderungen der Seechemie, wie sie in den Sedimenten aufgezeichnet werden, eignen sich um die natürlichen Schwankungen in der Quartären Klimageschichte Ostafrikas nachzuzeichnen. Basierend auf der guten 40Ar/39Ar- und 14C-Datierbarkeit der Seesedimente wird eine Chronologie der paläoökologischen Bedingungen anhand von Diatomeenvergesellschaftungen restauriert. Dabei zeigen sich für die Seen Nakuru, Elmenteita und Naivasha kurzfristige Transgression/ Regressions-Zyklen im Intervall von ca. 11.000 Jahren während des letzten (ca. 12.000 bis 6.000 J.v.H.) und vorletzten Interglazials (ca. 140.000 bis 60.000 J.v.H.). Zusätzlich kann ein allgemeiner, langfristiger Trend der Seeentwicklung von großen Frischwasserseen hin zu stärker salinen Gewässern innerhalb der letzen 1 Mio. Jahre festgestellt werden. Mittels Transferfunktionen und einem hydro-klimatischen Modellansatz können die restaurierten limnologischen Bedingungen als klimatische Schwankungen des Einzugsgebietes interpretiert werden. Wenngleich auch der zusätzliche Einfluss von tektonischen Veränderungen auf das Seeeinzugsgebiet und das Gewicht veränderter Grundwasserströme abgewogen werden, zeigt sich, dass allein geringfügig erhöhte Niederschlagswerte von ca. 30±10 % zu dramatischen Seespiegelanstiegen im Zentralen Keniarift führen. Aufgrund der etablierten hydrrologisch-klimatischen Wechselwirkungen werden Rückschlüsse auf die natürliche Variabilität des ostafrikanischen Klimas gezogen. Zudem wird die Sensitivität der Keniarift-Seen in Bezug auf die Stärke der äquatorialen Insolation und hinsichtilch variabler Oberflächenwassertemperaturen des Indischen Ozeans bewertet. N2 - In this work, an approach of paleoclimate reconstruction for tropical East Africa is presented. After giving a short summary of modern climate conditions in the tropics and the East African climate peculiarity, the potential of reconstructing climate from paleolake sediments is discussed. As demonstrated, the hydrologic sensitivity of high-elevated closed-basin lakes in the Central Kenya Rift yields valuable guaranties for the establishment of long-term climate records. Temporal fluctuations of the limnological characteristics saved in the lake sediments are used to define variations in the Quaternary climate history. Based on diatom analyses in radiocarbon- and 40Ar/39Ar-dated sediments, a chronology of paleoecologic fluctuations is developed for the Central Kenya Rift -lakes Nakuru, Elmenteita and Naivasha. At least during the penultimate interglacial (around 140 to 60 kyr BP) and during the last interglacial (around 12 to 4 kyr BP), these lakes experienced several transgression-regression cycles on time intervals of about 11,000 years. Additionally, a long-term trend of lake evolution is found suggesting the general succession from deep freshwater lakes towards more saline waters during the last million years. Using ecologic transfer functions and a simple lake-balance model, the observed paleohydrologic fluctuations are linked to potential precipitation-evaporation changes in the lake basins. Though also tectonic influences on the drainage pattern and the effect of varied seepage are investigated, it can be shown that already a small increase in precipitation of about 30±10 % may have affected the hydrologic budget of the intra-rift lakes within the reconstructed range. The findings of this study help to assess the natural climate variability of East Africa. They furthermore reflect the sensitivity of the Central Kenya Rift -lakes to fluctuations of large-scale climate parameters, such as solar radiation and sea-surface temperatures of the Indian Ocean. KW - Geologie KW - Diatomeen KW - Seen KW - Paläoklima KW - Modellierung KW - Afrika KW - geology KW - diatoms KW - lake KW - paleoclimate KW - modeling KW - Africa Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-0001428 ER -