TY - JOUR A1 - Guillemoteau, Julien A1 - Simon, Francois-Xavier A1 - Hulin, Guillaume A1 - Dousteyssier, Bertrand A1 - Dacko, Marion A1 - Tronicke, Jens T1 - 3-D imaging of subsurface magnetic permeability/susceptibility with portable frequency domain electromagnetic sensors for near surface exploration JF - Geophysical journal international N2 - The in-phase response collected by portable loop-loop electromagnetic induction (EMI) sensors operating at low and moderate induction numbers (<= 1) is typically used for sensing the magnetic permeability (or susceptibility) of the subsurface. This is due to the fact that the in-phase response contains a small induction fraction and a preponderant induced magnetization fraction. The magnetization fraction follows the magneto-static equations similarly to the magnetic method but with an active magnetic source. The use of an active source offers the possibility to collect data with several loop-loop configurations, which illuminate the subsurface with different sensitivity patterns. Such multiconfiguration soundings thereby allows the imaging of subsurface magnetic permeability/susceptibility variations through an inversion procedure. This method is not affected by the remnant magnetization and theoretically overcomes the classical depth ambiguity generally encountered with passive geomagnetic data. To invert multiconfiguration in-phase data sets, we propose a novel methodology based on a full-grid 3-D multichannel deconvolution (MCD) procedure. This method allows us to invert large data sets (e.g. consisting of more than a hundred thousand of data points) for a dense voxel-based 3-D model of magnetic susceptibility subject to smoothness constraints. In this study, we first present and discuss synthetic examples of our imaging procedure, which aim at simulating realistic conditions. Finally, we demonstrate the applicability of our method to field data collected across an archaeological site in Auvergne (France) to image the foundations of a Gallo-Roman villa built with basalt rock material. Our synthetic and field data examples demonstrate the potential of the proposed inversion procedure offering new and complementary ways to interpret data sets collected with modern EMI instruments. KW - Magnetic properties KW - Controlled source electromagnetics (CSEM) KW - Electromagnetic theory KW - Environmental magnetism KW - Inverse theory Y1 - 2019 U6 - https://doi.org/10.1093/gji/ggz382 SN - 0956-540X SN - 1365-246X VL - 219 IS - 3 SP - 1773 EP - 1785 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Brown, Maxwell C. A1 - Donadini, Fabio A1 - Nilsson, Andreas A1 - Panovska, Sanja A1 - Frank, Ute A1 - Korhonen, Kimmo A1 - Schuberth, Maximilian A1 - Korte, Monika A1 - Constable, Catherine G. T1 - GEOMAGIA50.v3: 2. A new paleomagnetic database for lake and marine sediments JF - Earth, planets and space N2 - Background: GEOMAGIA50.v3 for sediments is a comprehensive online database providing access to published paleomagnetic, rock magnetic, and chronological data obtained from lake and marine sediments deposited over the past 50 ka. Its objective is to catalogue data that will improve our understanding of changes in the geomagnetic field, physical environments, and climate. Findings: GEOMAGIA50.v3 for sediments builds upon the structure of the pre-existing GEOMAGIA50 database for magnetic data from archeological and volcanic materials. A strong emphasis has been placed on the storage of geochronological data, and it is the first magnetic archive that includes comprehensive radiocarbon age data from sediments. The database will be updated as new sediment data become available. Conclusions: The web-based interface for the sediment database is located at http://geomagia.gfz-potsdam.de/geomagiav3/SDquery.php. This paper is a companion to Brown et al. (Earth Planets Space doi:10.1186/s40623-015-0232-0,2015) and describes the data types, structure, and functionality of the sediment database. KW - Geomagnetism KW - Paleomagnetism KW - Sediment magnetism KW - Rock magnetism KW - Environmental magnetism KW - Database KW - GEOMAGIA50 Y1 - 2015 U6 - https://doi.org/10.1186/s40623-015-0233-z SN - 1880-5981 VL - 67 PB - Springer CY - Heidelberg ER -