TY - JOUR A1 - Sengupta, Saswati A1 - Chattopadhyay, Madhab K. A1 - Grossart, Hans-Peter T1 - The multifaceted roles of antibiotics and antibiotic resistance in nature JF - Frontiers in microbiology N2 - Antibiotics are chemotherapeutic agents, which have been a very powerful tool in the clinical management of bacterial diseases since the 1940s. However, benefits offered by these magic bullets have been substantially lost in subsequent days following the widespread emergence and dissemination of antibiotic-resistant strains. While it is obvious that excessive and imprudent use of antibiotics significantly contributes to the emergence of resistant strains, antibiotic resistance is also observed in natural bacteria of remote places unlikely to be impacted by human intervention. Both antibiotic biosynthetic genes and resistance-conferring genes have been known to evolve billions of years ago, long before clinical use of antibiotics. Hence it appears that antibiotics and antibiotics resistance determinants have some other roles in nature, which often elude our attention because of overemphasis on the therapeutic importance of antibiotics and the crisis imposed by the antibiotic resistance in pathogens. In the natural milieu, antibiotics are often found to be present in sub-inhibitory concentrations acting as signaling molecules supporting the process of quorum sensing and biofilm formation. They also play an important role in the production of virulence factors and influence host-parasite interactions (e.g., phagocytosis, adherence to the target cell, and so on). The evolutionary and ecological aspects of antibiotics and antibiotic resistance in the naturally occurring microbial community are little understood. Therefore, the actual role of antibiotics in nature warrants in-depth investigations. Studies on such an intriguing behavior of the microorganisms promise insight into the intricacies of the microbial physiology and are likely to provide some lead in controlling the emergence and subsequent dissemination of antibiotic resistance. This article highlights some of the recent findings on the role of antibiotics and the genes that confer resistance to antibiotics in nature. KW - antibiotics KW - sub-inhibitory concentration KW - quorum sensing KW - virulence KW - stress response KW - antibiotic resistance KW - antibiotic paradox Y1 - 2013 U6 - https://doi.org/10.3389/fmicb.2013.00047 SN - 1664-302X VL - 4 PB - Frontiers Research Foundation CY - Lausanne ER - TY - GEN A1 - Liesenjohann, Monique A1 - Liesenjohann, Thilo A1 - Palme, Rupert A1 - Eccard, Jana T1 - Differential behavioural and endocrine responses of common voles (Microtus arvalis) to nest predators and resource competitors N2 - Background: Adaptive behavioural strategies promoting co-occurrence of competing species are known to result from a sympatric evolutionary past. Strategies should be different for indirect resource competition (exploitation, e.g., foraging and avoidance behaviour) than for direct interspecific interference (e.g., aggression, vigilance, and nest guarding). We studied the effects of resource competition and nest predation in sympatric small mammal species using semi-fossorial voles and shrews, which prey on vole offspring during their sensitive nestling phase. Experiments were conducted in caged outdoor enclosures. Focus common vole mothers (Microtus arvalis) were either caged with a greater white-toothed shrew (Crocidura russula) as a potential nest predator, with an herbivorous field vole (Microtus agrestis) as a heterospecific resource competitor, or with a conspecific resource competitor. Results: We studied behavioural adaptations of vole mothers during pregnancy, parturition, and early lactation, specifically modifications of the burrow architecture and activity at burrow entrances. Further, we measured pre- and postpartum faecal corticosterone metabolites (FCMs) of mothers to test for elevated stress hormone levels. Only in the presence of the nest predator were prepartum FCMs elevated, but we found no loss of vole nestlings and no differences in nestling body weight in the presence of the nest predator or the heterospecific resource competitor. Although the presence of both the shrew and the field vole induced prepartum modifications to the burrow architecture, only nest predators caused an increase in vigilance time at burrow entrances during the sensitive nestling phase. Conclusion: Voles displayed an adequate behavioural response for both resource competitors and nest predators. They modified burrow architecture to improve nest guarding and increased their vigilance at burrow entrances to enhance offspring survival chances. Our study revealed differential behavioural adaptations to resource competitors and nest predators. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 402 KW - behavioural adaptations KW - small mammals KW - interspecific interactions KW - nest predation KW - stress response KW - faecal corticosterone metabolites KW - burrow system KW - shrews KW - voles Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-401184 ER - TY - GEN A1 - Schwarzenberger, Anke A1 - Christjani, Mark A1 - Wacker, Alexander T1 - Longevity of Daphnia and the attenuation of stress responses by melatonin N2 - The widespread occurrence of melatonin in prokaryotes as well as eukaryotes indicates that this indoleamine is considerably old. This high evolutionary age has led to the development of diverse functions of melatonin in different organisms, such as the detoxification of reactive oxygen species and anti-stress effects. In insects, i.e. Drosophila, the addition of melatonin has also been shown to increase the life span of this arthropod, probably by reducing age-related increasing oxidative stress. Although the presence of melatonin was recently found to exist in the ecological and toxicological model organism Daphnia, its function in this cladoceran has thus far not been addressed. Therefore, we challenged Daphnia with three different stressors in order to investigate potential stress-response attenuating effects of melatonin. i) Female and male daphnids were exposed to melatonin in a longevity experiment, ii) Daphnia were confronted with stress signals from the invertebrate predator Chaoborus sp., and iii) Daphnia were grown in high densities, i.e. under crowding-stress conditions. Results In our experiments we were able to show that longevity of daphnids was not affected by melatonin. Therefore, age-related increasing oxidative stress was probably not compensated by added melatonin. However, melatonin significantly attenuated Daphnia’ s response to acute predator stress, i.e. the formation of neckteeth which decrease the ability of the gape-limited predator Chaoborus sp. to handle their prey. In addition, melatonin decreased the extent of crowding-related production of resting eggs of Daphnia. Conclusions Our results confirm the effect of melatonin on inhibition of stress-signal responses of Daphnia. Until now, only a single study demonstrated melatonin effects on behavioral responses due to vertebrate kairomones, whereas we clearly show a more general effect of melatonin: i) on morphological predator defense induced by an invertebrate kairomone and ii) on life history characteristics transmitted by chemical cues from conspecifics. Therefore, we could generally confirm that melatonin plays a role in the attenuation of responses to different stressors in Daphnia. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 405 KW - Daphnia KW - chaoborus kairomone KW - melatonin KW - crowding KW - longevity KW - stress response Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-401476 ER -