TY - JOUR A1 - Kettner, Marie Therese A1 - Oberbeckmann, Sonja A1 - Labrenz, Matthias A1 - Grossart, Hans-Peter T1 - The Eukaryotic Life on Microplastics in Brackish Ecosystems JF - Frontiers in Microbiology N2 - Microplastics (MP) constitute a widespread contaminant all over the globe. Rivers and wastewater treatment plants (WWTP) transport annually several million tons of MP into freshwaters, estuaries and oceans, where they provide increasing artificial surfaces for microbial colonization. As knowledge on MP-attached communities is insufficient for brackish ecosystems, we conducted exposure experiments in the coastal Baltic Sea, an in-flowing river and a WWTP within the drainage basin. While reporting on prokaryotic and fungal communities from the same set-up previously, we focus here on the entire eukaryotic communities. Using high-throughput 18S rRNA gene sequencing, we analyzed the eukaryotes colonizing on two types of MP, polyethylene and polystyrene, and compared them to the ones in the surrounding water and on a natural surface (wood). More than 500 different taxa across almost all kingdoms of the eukaryotic tree of life were identified on MP, dominated by Alveolata, Metazoa, and Chloroplastida. The eukaryotic community composition on MP was significantly distinct from wood and the surrounding water, with overall lower diversity and the potentially harmful dinoflagellate Pfiesteria being enriched on MP. Co-occurrence networks, which include prokaryotic and eukaryotic taxa, hint at possibilities for dynamic microbial interactions on MP. This first report on total eukaryotic communities on MP in brackish environments highlights the complexity of MP-associated biofilms, potentially leading to altered microbial activities and hence changes in ecosystem functions. KW - microeukaryotes KW - plastic-associated biofilms KW - Baltic Sea KW - polyethylene KW - polystyrene KW - diversity profiles KW - network analysis KW - next-generation sequencing Y1 - 2019 U6 - https://doi.org/10.3389/fmicb.2019.00538 SN - 1664-302X VL - 10 PB - Frontiers Media CY - Lausanne ER - TY - GEN A1 - Kettner, Marie Therese A1 - Oberbeckmann, Sonja A1 - Labrenz, Matthias A1 - Grossart, Hans-Peter T1 - The Eukaryotic Life on Microplastics in Brackish Ecosystems T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Microplastics (MP) constitute a widespread contaminant all over the globe. Rivers and wastewater treatment plants (WWTP) transport annually several million tons of MP into freshwaters, estuaries and oceans, where they provide increasing artificial surfaces for microbial colonization. As knowledge on MP-attached communities is insufficient for brackish ecosystems, we conducted exposure experiments in the coastal Baltic Sea, an in-flowing river and a WWTP within the drainage basin. While reporting on prokaryotic and fungal communities from the same set-up previously, we focus here on the entire eukaryotic communities. Using high-throughput 18S rRNA gene sequencing, we analyzed the eukaryotes colonizing on two types of MP, polyethylene and polystyrene, and compared them to the ones in the surrounding water and on a natural surface (wood). More than 500 different taxa across almost all kingdoms of the eukaryotic tree of life were identified on MP, dominated by Alveolata, Metazoa, and Chloroplastida. The eukaryotic community composition on MP was significantly distinct from wood and the surrounding water, with overall lower diversity and the potentially harmful dinoflagellate Pfiesteria being enriched on MP. Co-occurrence networks, which include prokaryotic and eukaryotic taxa, hint at possibilities for dynamic microbial interactions on MP. This first report on total eukaryotic communities on MP in brackish environments highlights the complexity of MP-associated biofilms, potentially leading to altered microbial activities and hence changes in ecosystem functions. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 741 KW - microeukaryotes KW - plastic-associated biofilms KW - Baltic Sea KW - polyethylene KW - polystyrene KW - diversity profiles KW - network analysis KW - next-generation sequencing Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-434996 SN - 1866-8372 IS - 741 ER - TY - THES A1 - Leiser, Rico T1 - Biogeochemical processes governing microplastic transport in freshwater reservoirs N2 - The presented study investigated the influence of microbial and biogeochemical processes on the physical transport related properties and the fate of microplastics in freshwater reservoirs. The overarching goal was to elucidate the mechanisms leading to sedimentation and deposition of microplastics in such environments. This is of importance, as large amounts of initially buoyant microplastics are found in reservoir sediments worldwide. However, the transport processes which lead to microplastics accumulation in sediments, were up to now understudied. The impact of biofilm formation on the density and subsequent sedimentation of microplastics was investigated in the eutrophic Bautzen reservoirs (Chapter 2). Biofilms are complex microbial communities fixed to submerged surfaces through a slimy organic film. The mineral calcite was detected in the biofilms, which led to the sinking of the overgrown microplastic particles. The calcite was of biogenic origin, most likely precipitated by sessile cyanobacteria within the biofilms. Biofilm formation was also studied in the mesotrophic Malter reservoir. Unlike in Bautzen reservoir, biofilm formation did not govern the sedimentation of different microplastics in Malter reservoir (Chapter 3). Instead autumnal lake mixing led to the formation of sinking aggregates of microplastics and iron colloids. Such colloids form when anoxic, iron-rich water from the hypolimnion mixes with the oxygenated epilimnetic waters. The colloids bind organic material from the lake water, which leads to the formation of large and sinking iron-organo flocs. Hence, iron-organo floc formation and their influence on the buoyancy or burial of microplastics into sediments of Bautzen reservoir was studied in laboratory experiments (Chapter 4). Microplastics of different shapes (fiber, fragment, sphere) and sizes were readily incorporated into sinking iron-organo flocs. By this initially buoyant polyethylene microplastics were transported on top of sediments from Bautzen reservoir. Shortly after deposition, the microplastic bearing flocs started to subside and transported the pollutants into deeper sediment layers. The microplastics were not released from the sediments within two months of laboratory incubation. The stability of floc microplastic deposition was further investigated employing experiments with the iron reducing model organism Shewanella oneidensis (Chapter 5). It was shown, that reduction or re-mineralization of the iron minerals did not affect the integrity of the iron-organo flocs. The organic matrix was stable under iron reducing conditions. Hence, no incorporated microplastics were released from the flocs. As similar processes are likely to take place in natural sediments, this might explain the previous described low microplastic release from the sediments. This thesis introduced different mechanisms leading to the sedimentation of initially buoyant microplastics and to their subsequent deposition in freshwater reservoirs. Novel processes such as the aggregation with iron-organo flocs were identified and the understudied issue of biofilm densification through biogenic mineral formation was further investigated. The findings might have implications for the fate of microplastics within the river-reservoir system and outline the role of freshwater reservoirs as important accumulation zone for microplastics. Microplastics deposited in the sediments of reservoirs might not be transported further by through flowing river. Hence the study might contribute to better risk assessment and transport balances of these anthropogenic contaminants. N2 - Die vorliegende Arbeit befasst sich mit dem Einfluss mikrobiologischer und biogeochemischer Prozesse auf die physikalischen Transporteigenschaften und den Verbleib von Mikroplastik in Stauseen. Ein Schwerpunkt lag auf der Untersuchung von Mechanismen, welche die Sedimentation von Mikroplastik einleiten. Dies ist von hoher Relevanz, da große Mengen eigentlich schwimmfähigen Mikroplastiks in Stauseesedimenten gefunden werden, aber die Transportprozesse vom Wasser in das Sediment bislang unbekannt waren. In der eutrophen Talsperre Bautzen wurde der Einfluss der Biofilmbildung auf die Dichte und Sedimentation von Mikroplastik untersucht (Kapitel 2). Biofilme sind komplexe mikrobielle Lebensgemeinschaften, welche sich in Form schleimiger Filme auf im Wasser befindlichen Oberflächen bilden. Es konnte ein Zusammenhang zwischen der starken Dichtezunahme beziehungsweise dem Absinken der bewachsenen Partikel und dem Vorhandensein des Minerals Calcit innerhalb des aufwachsenden Biofilms festgestellt werden. Das Calcit war biogenen Ursprungs und wurde infolge der Photosynthese sessiler Cyanobakterien gebildet. In der mesotrophen Talsperre Malter wurde ebenfalls die Biofilmbildung auf Mikroplastik untersucht (Kapitel 3). Dort veränderte die Bildung von mikrobiellen Biofilmen das Sedimentationsverhalten von verschiedenen Mikroplastik-Polymeren nicht. Stattdessen wurde beobachtet, dass die Herbstzirkulation des Sees zur Bildung von Aggregaten aus Mikroplastik und mineralischen Eisenkolloiden führte. Diese Eisenkolloide bilden sich durch die Mischung von eisenreichen, sauerstofffreien Tiefenwasser mit sauerstoffhaltigem Oberflächenwasser. Die Kolloide verbinden sich mit organischem Material aus dem See und formen dadurch größere Flocken. Da die Bildung von eisenhaltigen Flocken ein für geschichtete Stauseen wichtiger Prozess ist, wurde ihr Einfluss auf die Schwimmfähigkeit von Mikroplastik und den darauffolgenden Einbau in die Sedimente untersucht (Kapitel 4). In Laborversuchen konnten verschiedene Formen (Fasern, Fragmente, Kugeln) und Größenklassen von Mikroplastik in die Flocken eingebaut werden. Da die Flocken im Wasser absinken, können sie zuvor schwimmfähiges Polyethylen-Mikroplastik zur Sedimentoberfläche transportieren. Dort angekommen, beginnen die Flocken zusammen mit dem Mikroplastik langsam in das Sediment einzusinken und transportieren es dadurch in tiefere Sedimentschichten. Im Labor konnte innerhalb von zwei Monaten keine signifikante Freisetzung des so transportierten Mikroplastiks aus den Sedimenten beobachtet werden. Die Transformation der Flocken und welchen Einfluss dies auf die Freisetzung von Mikroplastik hat, wurde in Versuchen mit dem eisenreduzierenden Modelorganismus Shewanella oneidensis untersucht (Kapitel 5). Hierbei zeigte sich, dass die Auflösung oder Umwandlung des Eisens beziehungsweise der Eisenminerale innerhalb der Flocken, nicht zur Zerstörung der Flocken führte. Die organische Matrix der Flocken blieb unverändert stabil und umschloss auch weiterhin das eingebaute Mikroplastik. Da im Sediment ähnliche Abbauprozesse ablaufen, gibt dies einen möglichen Hinweis darauf, warum abgelagertes Mikroplastik nicht mehr aus Sedimenten freigesetzt wird. Im Rahmen dieser Arbeit konnte gezeigt werden, dass in Talsperren unterschiedliche Prozesse zum Absinken und zur Deposition von Mikroplastik führen. Es wurden neuartige Prozesse wie die Aggregation mit eisenhaltigen Flocken identifiziert und ungewöhnliche Aspekte wie die biogene Mineralbildung näher beleuchtet. Dadurch können wichtige Implikationen hinsichtlich des Transports von Mikroplastik in Fluss- Stausee-Systemen abgeleitet werden. Aufgrund der beschriebenen Sedimentationsprozesse sind Stauseen wichtige Akkumulationszonen für Mikroplastik. Im Stausee sedimentierendes Mikroplastik wird potentiell nicht vom aufgestauten Fluss weitertransportiert. Daher könnten die hier beschriebenen Prozesse zu einer Verbesserung von Risikoabschätzungen und Transportbilanzen dieser anthropogenen Belastung führen. KW - microplastics KW - reservoirs KW - calcite KW - iron KW - biofouling KW - sedimentation KW - polyethylene KW - biofilms KW - Mikroplastik KW - Stauhaltungen KW - Kalzit KW - Eisen KW - Sedimentation KW - Polyethylen KW - Biofilme Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-520240 ER -