TY - JOUR A1 - Marquart, Arnim A1 - Goldbach, Lars A1 - Blaum, Niels T1 - Soil-texture affects the influence of termite macropores on soil water infiltration in a semi-arid savanna JF - Ecohydrology : ecosystems, land and water process interactions, ecohydrogeomorphology N2 - Subterranean termites create tunnels (macropores) for foraging that can influence water infiltration and may lead to preferential flow to deeper soil layers. This is particularly important in water limited ecosystems such as semi-arid, agriculturally utilized savannas, which are particularly prone to land degradation and shrub-encroachment. Using termite activity has been suggested as a restoration measure, but their impact on hydrology is neither universal nor yet fully understood. Here, we used highly replicated, small-scale (50 x 50 cm) rain-simulation experiments to analyse the interacting effects of either vegetation (grass dominated vs. shrub dominated sites) or soil texture (sand vs. loamy sand) and termite foraging macropores on infiltration patterns. We used Brilliant Blue FCF as colour tracer to make the flow pathways in paired experiments visible, on either termite-disturbed soil or controls without surface macropores in two semi-arid Namibian savannas (with either heterogeneous soil texture or shrub cover). On highly shrub-encroached plots in the savanna site with heterogeneous soil texture, termite macropores increased maximum infiltration depth and total amount of infiltrated water on loamy sand, but not on sandy soil. In the sandy savanna with heterogeneous shrub cover, neither termite activity nor shrub density affected the infiltration. Termite's effect on infiltration depends on the soil's hydraulic conductivity and occurs mostly under ponded conditions, intercepting run-off. In semi-arid savanna soils with a considerable fraction of fine particles, termites are likely an important factor for soil water dynamics. KW - ecosystem functioning KW - infiltration KW - macropores KW - rain-simulation KW - shrub-encroachment KW - soil texture KW - termites Y1 - 2020 U6 - https://doi.org/10.1002/eco.2249 SN - 1936-0584 SN - 1936-0592 VL - 13 IS - 8 PB - Wiley CY - Chichester ER - TY - JOUR A1 - Marquart, Arnim A1 - Eldridge, David J. A1 - Geissler, Katja A1 - Lobas, Christoph A1 - Blaum, Niels T1 - Interconnected effects of shrubs, invertebrate-derived macropores and soil texture on water infiltration in a semi-arid savanna rangeland JF - Land degradation & development N2 - Many semi arid savannas are prone to degradation, caused for example, by overgrazing or extreme climatic events, which often lead to shrub encroachment. Overgrazing by livestock affects vegetation and infiltration processes by directly altering plant composition (selective grazing) or by impacting soil physical properties (trampling). Water infiltration is controlled by several parameters, such as macropores (created by soil-burrowing animals or plant roots) and soil texture, but their effects have mostly been studied in isolation. Here we report on a study, in which we conducted infiltration experiments to analyze the interconnected effects of invertebrate-created macropores, shrubs and soil texture (sandy soil and loamy sand) on infiltration in two Namibian rangelands. Using structural equation modeling, we found a direct positive effect of shrub size on infiltration and indirectly via invertebrate macropores on both soil types. On loamy sands this effect was even stronger, but additionally, invertebrate-created macropores became relevant as a direct driver of infiltration. Our results provide new insights into the effects of vegetation and invertebrates on infiltration under different soil textures. Pastoralists should use management strategies that maintain a heterogeneous plant community that supports soil fauna to sustain healthy soil water dynamics, particularly on soils with higher loam content. Understanding the fundamental functioning of soil water dynamics in drylands is critical because these ecosystems are water-limited and support the livelihoods of many cultures worldwide. KW - hydrology KW - infiltration KW - invertebrate macropores KW - shrub-encroachment KW - soil function KW - soil texture Y1 - 2020 U6 - https://doi.org/10.1002/ldr.3598 SN - 1085-3278 SN - 1099-145X VL - 31 IS - 16 SP - 2307 EP - 2318 PB - Wiley CY - Chichester, Sussex ER -