TY - JOUR A1 - Zhang, Xiaorong A1 - Caserta, Giorgio A1 - Yarman, Aysu A1 - Supala, Eszter A1 - Tadjoung Waffo, Armel Franklin A1 - Wollenberger, Ulla A1 - Gyurcsanyi, Robert E. A1 - Zebger, Ingo A1 - Scheller, Frieder W. T1 - "Out of Pocket" protein binding BT - a dilemma of epitope imprinted polymers revealed for human hemoglobin JF - Chemosensors N2 - The epitope imprinting approach applies exposed peptides as templates to synthesize Molecularly Imprinted Polymers (MIPs) for the recognition of the parent protein. While generally the template protein binding to such MIPs is considered to occur via the epitope-shaped cavities, unspecific interactions of the analyte with non-imprinted polymer as well as the detection method used may add to the complexity and interpretation of the target rebinding. To get new insights on the effects governing the rebinding of analytes, we electrosynthesized two epitope-imprinted polymers using the N-terminal pentapeptide VHLTP-amide of human hemoglobin (HbA) as the template. MIPs were prepared either by single-step electrosynthesis of scopoletin/pentapeptide mixtures or electropolymerization was performed after chemisorption of the cysteine extended VHLTP peptide. Rebinding of the target peptide and the parent HbA protein to the MIP nanofilms was quantified by square wave voltammetry using a redox probe gating, surface enhanced infrared absorption spectroscopy, and atomic force microscopy. While binding of the pentapeptide shows large influence of the amino acid sequence, all three methods revealed strong non-specific binding of HbA to both polyscopoletin-based MIPs with even higher affinities than the target peptides. KW - Molecularly Imprinted Polymers KW - epitope imprinting KW - non-specific KW - binding KW - redox gating KW - SEIRA spectroelectrochemistry Y1 - 2021 U6 - https://doi.org/10.3390/chemosensors9060128 SN - 2227-9040 VL - 9 IS - 6 PB - MDPI CY - Basel ER -