TY - JOUR A1 - Kloss, Lena A1 - Fischer, Markus A1 - Durka, Walter T1 - Land-use effects on genetic structure of a common grassland herb a matter of scale JF - Basic and applied ecology : Journal of the Gesellschaft für Ökologie N2 - The most common management practices in European grasslands are grazing by livestock and mowing for silage and hay. Grazing and mowing differ in their potential effects on plant gene flow and resulting population genetic structure. After assessing its breeding system, we investigated the effect of land use on the population genetic structure in the common grassland plant Veronica chamaedrys using 63 study populations on meadows, mown pastures and pastures in three regions in Germany, the so-called Biodiversity Exploratories. We determined plant density and analysed the genetic diversity, differentiation and small-scale genetic structure using amplified fragment length polymorphism (AFLP) markers. The breeding system of V chamaedrys turned out as self-incompatible and outcrossing. Its genetic diversity did not differ among land-use types. This may be attributed to large population sizes and the strong dispersal ability of the species, which maintains genetically diverse populations not prone to genetic drift. Genetic differentiation among populations was low (overall F(ST) = 0.075) but significant among the three regions. Land use had only weak effects on population differentiation in only one region. However, land use affected small-scale genetic structure suggesting that gene flow within plots was more restricted on meadows than on mown and unmown pastures. Our study shows that land use influences genetic structure mainly at the small scale within populations, despite high gene flow. KW - Biodiversity exploratories KW - Mowing KW - Grazing KW - AFLP KW - Veronica KW - Breeding system KW - Pollination experiment KW - Pollen-ovule ratio KW - Isolation by distance KW - Spatial autocorrelation Y1 - 2011 U6 - https://doi.org/10.1016/j.baae.2011.06.001 SN - 1439-1791 VL - 12 IS - 5 SP - 440 EP - 448 PB - Elsevier CY - Jena ER - TY - JOUR A1 - Lauterbach, Dirk A1 - Ristow, Michael A1 - Gemeinholzer, B. T1 - Genetic population structure, fitness variation and the importance of population history in remnant populations of the endangered plant Silene chlorantha (Willd.) Ehrh. (Caryophyllaceae) JF - Plant biology N2 - Habitat fragmentation can lead to a decline of genetic diversity, a potential risk for the survival of natural populations. Fragmented populations can become highly differentiated due to reduced gene flow and genetic drift. A decline in number of individuals can result in lower reproductive fitness due to inbreeding effects. We investigated genetic variation within and between 11 populations of the rare and endangered plant Silene chlorantha in northeastern Germany to support conservation strategies. Genetic diversity was evaluated using AFLP techniques and the results were correlated to fitness traits. Fitness evaluation in nature and in a common garden approach was conducted. Our analysis revealed population differentiation was high and within population genetic diversity was intermediate. A clear population structure was supported by a Bayesian approach, AMOVA and neighbour-joining analysis. No correlation between genetic and geographic distance was found. Our results indicate that patterns of population differentiation were mainly caused by temporal and/or spatial isolation and genetic drift. The fitness evaluation revealed that pollinator limitation and habitat quality seem, at present, to be more important to reproductive fitness than genetic diversity by itself. Populations of S. chlorantha with low genetic diversity have the potential to increase in individual number if habitat conditions improve. This was detected in a single large population in the investigation area, which was formerly affected by bottleneck effects. KW - AFLP KW - fitness KW - population genetic structure KW - population history Y1 - 2011 U6 - https://doi.org/10.1111/j.1438-8677.2010.00418.x SN - 1435-8603 VL - 13 IS - 4 SP - 667 EP - 677 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Lauterbach, Daniel A1 - Burkart, Michael A1 - Gemeinholzer, Birgit T1 - Rapid genetic differentiation between ex situ and their in situ source populations - an example of the endangered Silene otites (Caryophyllaceae) JF - Botanical journal of the Linnean Society N2 - Ex situ cultivation in botanic gardens could be one possibility to preserve plant species diversity and genetic variation. However, old ex situ populations are often sparsely documented. We were able to retrieve three different ex situ populations and their source in situ populations of the endangered plant species Silene otites after 20-36 years of isolation. Furthermore, three additional wild populations were included in the analysis. Population genetic diversity and differentiation were analysed using AFLP markers. Genetic variation in the ex situ populations was lower than the variation found in the in situ populations. Strong differentiation (F-ST = 0.21-0.36) between corresponding in situ and ex situ populations was observed. Bayesian clustering approach also showed a distinct genetic separation between in situ and ex situ populations. The high genetic differentiation and loss of genetic diversity during spatial and temporal isolation in the ex situ populations can be attributable to small population sizes and unconscious selection during cultivation. Therefore, adequate sampling prior to ex situ cultivation and large effective population sizes are important to preserve genetic diversity. Near-natural cultivation allowing for generation overlap and interspecific competition without artificial selection is recommended as being best for the maintenance of the genetic constitution. KW - AFLP KW - botanical garden KW - conservation genetics KW - founder effect KW - population size Y1 - 2012 U6 - https://doi.org/10.1111/j.1095-8339.2011.01185.x SN - 0024-4074 VL - 168 IS - 1 SP - 64 EP - 75 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Lauterbach, Daniel A1 - Ristow, Michael A1 - Gemeinholzer, Birgit T1 - Population genetics and fitness in fragmented populations of the dioecious and endangered Silene otites (Caryophyllaceae) JF - Plant systematics and evolution N2 - Population fragmentation is often correlated with loss of genetic diversity and reduced fitness. Obligate out-crossing (dioecy) is expected to enhance genetic diversity, reduce genetic differentiation, and avoid inbreeding depression through frequent gene flow. However, in highly fragmented populations dioecy has only diminishing effects upon genetic structure as pollination limitations (e.g. flight distance of pollinators) most often restrict inter-population gene flow in insect pollinated species. In fragmented dry grasslands in northeastern Germany, we analysed genetic structure, fitness, and habitat quality of the endangered dioecious Silene otites (Caryophyllaceae). Using AFLP markers, a high level of differentiation among ten populations was found (F (st) = 0.36), while the intra-population genetic diversities (H (E) = 0.165-0.240) were similar as compared to hermaphroditic species. There was neither a correlation between geographic and genetic distance nor between genetic diversity and population size, which indicates reduced gene flow among populations and random genetic drift. Plant size was positively correlated with genetic diversity. Seed set and number of juveniles were positively related to population size. Higher total coverage resulted in reduced plant fitness, and the number of juveniles was negatively correlated to cryptogam cover. Additionally, we found a sex ratio bias towards more male plants in larger populations. Overall, our results indicate that on a regional geographic scale dioecy does not necessarily prevent genetic erosion in the case of habitat fragmentation, especially in the absence of long distance seed and pollen dispersal capacity. KW - AFLP KW - Population size KW - Mating system KW - Isolation by distance KW - Sex ratio Y1 - 2012 U6 - https://doi.org/10.1007/s00606-011-0533-0 SN - 0378-2697 VL - 298 IS - 1 SP - 155 EP - 164 PB - Springer CY - Wien ER - TY - JOUR A1 - Gemeinholzer, B. A1 - May, F. A1 - Ristow, Michael A1 - Batsch, C. A1 - Lauterbach, D. T1 - Strong genetic differentiation on a fragmentation gradient among populations of the heterocarpic annual Catananche lutea L. (Asteraceae) JF - Plant systematics and evolution N2 - In landscapes which are predominately characterised by agriculture, natural ecosystems are often reduced to a mosaic of scattered patches of natural vegetation. Species with formerly connected distribution ranges now have restricted gene flow among populations. This has isolating effects upon population structure, because species are often confined by their limited dispersal capabilities. In this study, we test the effects of habitat fragmentation, precipitation, and isolation of populations on the genetic structure (AFLP) and fitness of the Asteraceae Catananche lutea. Our study area is an agro-dominated ecosystem in the desert-Mediterranean transition zone of the Southern Judea Lowlands in Israel. Our analysis revealed an intermediate level of intra-population genetic diversity across the study site with reduced genetic diversity on smaller scale. Although the size of the whole study area was relatively small (20 x 45 km), we found isolation by distance to be effective. We detected a high level of genetic differentiation among populations but genetic structure did not reflect spatial patterns. Population genetic diversity was correlated neither with position along the precipitation gradient nor with different seed types or other plant fitness variables in C. lutea. KW - AFLP KW - Heterocarpy KW - Population structure KW - Precipitation gradient KW - Asteraceae Y1 - 2012 U6 - https://doi.org/10.1007/s00606-012-0661-1 SN - 0378-2697 VL - 298 IS - 8 SP - 1585 EP - 1596 PB - Springer CY - Wien ER - TY - JOUR A1 - Eckert, Silvia A1 - Herden, Jasmin A1 - Stift, Marc A1 - Durka, Walter A1 - Kleunen, Mark Van A1 - Joshi, Jasmin Radha T1 - Traces of Genetic but Not Epigenetic Adaptation in the Invasive Goldenrod Solidago canadensis Despite the Absence of Population Structure JF - Frontiers in Ecology and Evolution N2 - Biological invasions may result from multiple introductions, which might compensate for reduced gene pools caused by bottleneck events, but could also dilute adaptive processes. A previous common-garden experiment showed heritable latitudinal clines in fitness-related traits in the invasive goldenrod Solidago canadensis in Central Europe. These latitudinal clines remained stable even in plants chemically treated with zebularine to reduce epigenetic variation. However, despite the heritability of traits investigated, genetic isolation-by-distance was non-significant. Utilizing the same specimens, we applied a molecular analysis of (epi)genetic differentiation with standard and methylation-sensitive (MSAP) AFLPs. We tested whether this variation was spatially structured among populations and whether zebularine had altered epigenetic variation. Additionally, we used genome scans to mine for putative outlier loci susceptible to selection processes in the invaded range. Despite the absence of isolation-by-distance, we found spatial genetic neighborhoods among populations and two AFLP clusters differentiating northern and southern Solidago populations. Genetic and epigenetic diversity were significantly correlated, but not linked to phenotypic variation. Hence, no spatial epigenetic patterns were detected along the latitudinal gradient sampled. Applying genome-scan approaches (BAYESCAN, BAYESCENV, RDA, and LFMM), we found 51 genetic and epigenetic loci putatively responding to selection. One of these genetic loci was significantly more frequent in populations at the northern range. Also, one epigenetic locus was more frequent in populations in the southern range, but this pattern was lost under zebularine treatment. Our results point to some genetic, but not epigenetic adaptation processes along a large-scale latitudinal gradient of S. canadensis in its invasive range. KW - AFLP KW - MSAP KW - cytosine methylation KW - spatial autocorrelation KW - genome scan Y1 - 2022 U6 - https://doi.org/10.3389/fevo.2022.856453 SN - 2296-701X VL - 10 SP - 1 EP - 17 PB - Frontiers CY - Lausanne, Schweiz ER - TY - JOUR A1 - Eckert, Silvia A1 - Herden, Jasmin A1 - Stift, Marc A1 - Durka, Walter A1 - Kleunen, Mark Van A1 - Joshi, Jasmin Radha T1 - Traces of Genetic but Not Epigenetic Adaptation in the Invasive Goldenrod Solidago canadensis Despite the Absence of Population Structure JF - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Biological invasions may result from multiple introductions, which might compensate for reduced gene pools caused by bottleneck events, but could also dilute adaptive processes. A previous common-garden experiment showed heritable latitudinal clines in fitness-related traits in the invasive goldenrod Solidago canadensis in Central Europe. These latitudinal clines remained stable even in plants chemically treated with zebularine to reduce epigenetic variation. However, despite the heritability of traits investigated, genetic isolation-by-distance was non-significant. Utilizing the same specimens, we applied a molecular analysis of (epi)genetic differentiation with standard and methylation-sensitive (MSAP) AFLPs. We tested whether this variation was spatially structured among populations and whether zebularine had altered epigenetic variation. Additionally, we used genome scans to mine for putative outlier loci susceptible to selection processes in the invaded range. Despite the absence of isolation-by-distance, we found spatial genetic neighborhoods among populations and two AFLP clusters differentiating northern and southern Solidago populations. Genetic and epigenetic diversity were significantly correlated, but not linked to phenotypic variation. Hence, no spatial epigenetic patterns were detected along the latitudinal gradient sampled. Applying genome-scan approaches (BAYESCAN, BAYESCENV, RDA, and LFMM), we found 51 genetic and epigenetic loci putatively responding to selection. One of these genetic loci was significantly more frequent in populations at the northern range. Also, one epigenetic locus was more frequent in populations in the southern range, but this pattern was lost under zebularine treatment. Our results point to some genetic, but not epigenetic adaptation processes along a large-scale latitudinal gradient of S. canadensis in its invasive range. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1271 KW - AFLP KW - MSAP KW - cytosine methylation KW - spatial autocorrelation KW - genome scan Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-566758 SN - 1866-8372 SP - 1 EP - 17 PB - Universitätsverlag Potsdam CY - Potsdam ER -