TY - JOUR A1 - Omelʹchenko, Oleh E. T1 - Nonstationary coherence-incoherence patterns in nonlocally coupled heterogeneous phase oscillators JF - Chaos : an interdisciplinary journal of nonlinear science N2 - We consider a large ring of nonlocally coupled phase oscillators and show that apart from stationary chimera states, this system also supports nonstationary coherence-incoherence patterns (CIPs). For identical oscillators, these CIPs behave as breathing chimera states and are found in a relatively small parameter region only. It turns out that the stability region of these states enlarges dramatically if a certain amount of spatially uniform heterogeneity (e.g., Lorentzian distribution of natural frequencies) is introduced in the system. In this case, nonstationary CIPs can be studied as stable quasiperiodic solutions of a corresponding mean-field equation, formally describing the infinite system limit. Carrying out direct numerical simulations of the mean-field equation, we find different types of nonstationary CIPs with pulsing and/or alternating chimera-like behavior. Moreover, we reveal a complex bifurcation scenario underlying the transformation of these CIPs into each other. These theoretical predictions are confirmed by numerical simulations of the original coupled oscillator system. KW - chimera states KW - synchronization KW - networks KW - Kuramoto KW - populations KW - dynamics KW - bumps KW - model Y1 - 2020 U6 - https://doi.org/10.1063/1.5145259 SN - 1054-1500 SN - 1089-7682 VL - 30 IS - 4 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Munyaev, Vyacheslav O. A1 - Smirnov, Lev A. A1 - Kostin, Vasily A. A1 - Osipov, Grigory V. A1 - Pikovskij, Arkadij T1 - Analytical approach to synchronous states of globally coupled noisy rotators JF - New journal of physics : the open-access journal for physics N2 - We study populations of globally coupled noisy rotators (oscillators with inertia) allowing a nonequilibrium transition from a desynchronized state to a synchronous one (with the nonvanishing order parameter). The newly developed analytical approaches resulted in solutions describing the synchronous state with constant order parameter for weakly inertial rotators, including the case of zero inertia, when the model is reduced to the Kuramoto model of coupled noise oscillators. These approaches provide also analytical criteria distinguishing supercritical and subcritical transitions to the desynchronized state and indicate the universality of such transitions in rotator ensembles. All the obtained analytical results are confirmed by the numerical ones, both by direct simulations of the large ensembles and by solution of the associated Fokker-Planck equation. We also propose generalizations of the developed approaches for setups where different rotators parameters (natural frequencies, masses, noise intensities, strengths and phase shifts in coupling) are dispersed. KW - coupled rotators KW - synchronization transition KW - hysteresis KW - Kuramoto KW - model KW - noisy systems Y1 - 2020 U6 - https://doi.org/10.1088/1367-2630/ab6f93 SN - 1367-2630 VL - 22 IS - 2 PB - IOP Publ. Ltd. CY - Bristol ER -