TY - JOUR A1 - Tesselaar, Max A1 - Botzen, W. J. Wouter A1 - Haer, Toon A1 - Hudson, Paul A1 - Tiggeloven, Timothy A1 - Aerts, Jeroen C. J. H. T1 - Regional inequalities in flood insurance affordability and uptake under climate change JF - Sustainability N2 - Flood insurance coverage can enhance financial resilience of households to changing flood risk caused by climate change. However, income inequalities imply that not all households can afford flood insurance. The uptake of flood insurance in voluntary markets may decline when flood risk increases as a result of climate change. This increase in flood risk may cause substantially higher risk-based insurance premiums, reduce the willingness to purchase flood insurance, and worsen problems with the unaffordability of coverage for low-income households. A socio-economic tipping-point can occur when the functioning of a formal flood insurance system is hampered by diminishing demand for coverage. In this study, we examine whether such a tipping-point can occur in Europe for current flood insurance systems under different trends in future flood risk caused by climate and socio-economic change. This analysis gives insights into regional inequalities concerning the ability to continue to use flood insurance as an instrument to adapt to changing flood risk. For this study, we adapt the "Dynamic Integrated Flood and Insurance" (DIFI) model by integrating new flood risk simulations in the model that enable examining impacts from various scenarios of climate and socio-economic change on flood insurance premiums and consumer demand. Our results show rising unaffordability and declining demand for flood insurance across scenarios towards 2080. Under a high climate change scenario, simulations show the occurrence of a socio-economic tipping-point in several regions, where insurance uptake almost disappears. A tipping-point and related inequalities in the ability to use flood insurance as an adaptation instrument can be mitigated by introducing reforms of flood insurance arrangements. KW - climate change KW - flood risk management KW - insurance KW - socio-economic KW - tipping-point KW - adaptation KW - partial equilibrium modeling Y1 - 2020 U6 - https://doi.org/10.3390/su12208734 SN - 2071-1050 VL - 12 IS - 20 PB - MDPI CY - Basel ER - TY - JOUR A1 - Jehmlich, Caroline A1 - Hudson, Paul A1 - Thieken, Annegret T1 - Short contribution on adaptive behaviour of flood-prone companies BT - a pilot study of Dresden-Laubegast, Germany JF - Journal of Flood Risk Management N2 - Integrated flood management strategies consider property-level precautionary measures as a vital part. Whereas this is a well-researched topic for residents, little is known about the adaptive behaviour of flood-prone companies although they often settle on the ground floor of buildings and are thus among the first affected by flooding. This pilot study analyses flood responses of 64 businesses in a district of the city of Dresden, Germany that experienced major flooding in 2002 and 2013. Using standardised survey data and accompanying qualitative interviews, the analyses revealed that the largest driver of adaptive behaviour is experiencing flood events. Intangible factors such as tradition and a sense of community play a role for the decision to stay in the area, while lacking ownership might hamper property-level adaptation. Further research is also needed to understand the role of insurance and governmental aid for recovery and adaptation of businesses. KW - adaptation KW - disaster risk reduction KW - integrated flood risk management KW - risk perception Y1 - 2019 U6 - https://doi.org/10.1111/jfr3.12653 SN - 1753-318X VL - 13 PB - Wiley-Blackwell CY - Oxford ER - TY - JOUR A1 - Kruse, Stefan A1 - Kolmogorov, Aleksey I. A1 - Pestryakova, Luidmila Agafyevna A1 - Herzschuh, Ulrike T1 - Long-lived larch clones may conserve adaptations that could restrict treeline migration in northern Siberia JF - Ecology and evolution N2 - The occurrence of refugia beyond the arctic treeline and genetic adaptation therein play a crucial role of largely unknown effect size. While refugia have potential for rapidly colonizing the tundra under global warming, the taxa may be maladapted to the new environmental conditions. Understanding the genetic composition and age of refugia is thus crucial for predicting any migration response. Here, we genotype 194 larch individuals from an similar to 1.8 km(2)area in northcentral Siberia on the southern Taimyr Peninsula by applying an assay of 16 nuclear microsatellite markers. For estimating the age of clonal individuals, we counted tree rings at sections along branches to establish a lateral growth rate that was then combined with geographic distance. Findings reveal that the predominant reproduction type is clonal (58.76%) by short distance spreading of ramets. One outlier of clones 1 km apart could have been dispersed by reindeer. In clonal groups and within individuals, we find that somatic mutations accumulate with geographic distance. Clonal groups of two or more individuals are observed. Clonal age estimates regularly suggest individuals as old as 2,200 years, which coincides with a major environmental change that forced a treeline retreat in the region. We conclude that individuals with clonal growth mode were naturally selected as it lowers the likely risk of extinction under a harsh environment. We discuss this legacy from the past that might now be a maladaptation and hinder expansion under currently strongly increasing temperatures. KW - adaptation KW - clonal growth KW - growth rate KW - Larix KW - leading edge KW - treeline KW - migration Y1 - 2020 U6 - https://doi.org/10.1002/ece3.6660 SN - 2045-7758 VL - 10 IS - 18 SP - 10017 EP - 10030 PB - Wiley CY - Hoboken ER -