TY - JOUR A1 - Hinkel, Jochen A1 - Lincke, Daniel A1 - Vafeidis, Athanasios T. A1 - Perrette, Mahé A1 - Nicholls, Robert James A1 - Tol, Richard S. J. A1 - Marzeion, Ben A1 - Fettweis, Xavier A1 - Ionescu, Cezar A1 - Levermann, Anders T1 - Coastal flood damage and adaptation costs under 21st century sea-level rise JF - Proceedings of the National Academy of Sciences of the United States of America N2 - Coastal flood damage and adaptation costs under 21st century sea-level rise are assessed on a global scale taking into account a wide range of uncertainties in continental topography data, population data, protection strategies, socioeconomic development and sea-level rise. Uncertainty in global mean and regional sea level was derived from four different climate models from the Coupled Model Intercomparison Project Phase 5, each combined with three land-ice scenarios based on the published range of contributions from ice sheets and glaciers. Without adaptation, 0.2-4.6% of global population is expected to be flooded annually in 2100 under 25-123 cm of global mean sea-level rise, with expected annual losses of 0.3-9.3% of global gross domestic product. Damages of this magnitude are very unlikely to be tolerated by society and adaptation will be widespread. The global costs of protecting the coast with dikes are significant with annual investment and maintenance costs of US$ 12-71 billion in 2100, but much smaller than the global cost of avoided damages even without accounting for indirect costs of damage to regional production supply. Flood damages by the end of this century are much more sensitive to the applied protection strategy than to variations in climate and socioeconomic scenarios as well as in physical data sources (topography and climate model). Our results emphasize the central role of long-term coastal adaptation strategies. These should also take into account that protecting large parts of the developed coast increases the risk of catastrophic consequences in the case of defense failure. KW - coastal flooding KW - climate change impact KW - loss and damage Y1 - 2014 U6 - https://doi.org/10.1073/pnas.1222469111 SN - 0027-8424 VL - 111 IS - 9 SP - 3292 EP - 3297 PB - National Acad. of Sciences CY - Washington ER - TY - JOUR A1 - Didovets, Iulii A1 - Lobanova, Anastasia A1 - Bronstert, Axel A1 - Snizhko, Sergiy A1 - Maule, Cathrine Fox A1 - Krysanova, Valentina T1 - Assessment of Climate Change Impacts on Water Resources in Three Representative Ukrainian Catchments Using Eco-Hydrological Modelling JF - Water N2 - The information about climate change impact on river discharge is vitally important for planning adaptation measures. The future changes can affect different water-related sectors. The main goal of this study was to investigate the potential water resource changes in Ukraine, focusing on three mesoscale river catchments (Teteriv, UpperWestern Bug, and Samara) characteristic for different geographical zones. The catchment scale watershed model—Soil and Water Integrated Model (SWIM)—was setup, calibrated, and validated for the three catchments under consideration. A set of seven GCM-RCM (General Circulation Model-Regional Climate Model) coupled climate scenarios corresponding to RCPs (Representative Concentration Pathways) 4.5 and 8.5 were used to drive the hydrological catchment model. The climate projections, used in the study, were considered as three combinations of low, intermediate, and high end scenarios. Our results indicate the shifts in the seasonal distribution of runoff in all three catchments. The spring high flow occurs earlier as a result of temperature increases and earlier snowmelt. The fairly robust trend is an increase in river discharge in the winter season, and most of the scenarios show a potential decrease in river discharge in the spring. KW - Ukraine KW - climate change impact KW - river discharge KW - Samara KW - Teteriv KW - Western Bug KW - runoff KW - SWIM KW - IMPRESSIONS Y1 - 2017 U6 - https://doi.org/10.3390/w9030204 SN - 2073-4441 VL - 9 IS - 3 PB - MDPI CY - Basel ER -