TY - JOUR A1 - Letort, Jean A1 - Retailleau, Lise A1 - Boue, Pierre A1 - Radiguet, Mathilde A1 - Gardonio, Blandine A1 - Cotton, Fabrice Pierre A1 - Campillo, Michel T1 - Lateral variations of the Guerrero-Oaxaca subduction zone (Mexico) derived from weak seismicity (M(b)3.5+) detected on a single array at teleseismic distance JF - Geophysical journal international N2 - Detections of pP and sP phase arrivals (the so-called depth phases) at teleseismic distance provide one of the best ways to estimate earthquake focal depth, as the P-pP and the P-sP delays are strongly dependent on the depth. Based on a new processing workflow and using a single seismic array at teleseismic distance, we can estimate the depth of clusters of small events down to magnitude M-b 3.5. Our method provides a direct view of the relative variations of the seismicity depth from an active area. This study focuses on the application of this new methodology to study the lateral variations of the Guerrero subduction zone (Mexico) using the Eielson seismic array in Alaska (USA). After denoising the signals, 1232 M-b 3.5 + events were detected, with clear P, pP, sP and PcP arrivals. A high-resolution view of the lateral variations of the depth of the seismicity of the Guerero-Oaxaca area is thus obtained. The seismicity is shown to be mainly clustered along the interface, coherently following the geometry of the plate as constrained by the receiver-function analysis along the Meso America Subduction Experiment profile. From this study, the hypothesis of tears on the western part of Guerrero and the eastern part of Oaxaca are strongly confirmed by dramatic lateral changes in the depth of the earthquake clusters. The presence of these two tears might explain the observed lateral variations in seismicity, which is correlated with the boundaries of the slow slip events. KW - North America KW - Time-series analysis KW - Body waves KW - Earthquake source observations KW - Seismicity and tectonics Y1 - 2018 U6 - https://doi.org/10.1093/gji/ggy035 SN - 0956-540X SN - 1365-246X VL - 213 IS - 2 SP - 1002 EP - 1012 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Krüger, Frank A1 - Kulikova, Galina A1 - Landgraf, Angela T1 - Magnitudes for the historical 1885 (Belovodskoe), the 1887 (Verny) and the 1889 (Chilik) earthquakes in Central Asia determined from magnetogram recordings JF - Geophysical journal international N2 - Six large magnitude earthquakes in Central Asia which occurred at the end of the 19th century were recorded on early magnetographs in Great Britain. Scalar seismic moment estimates of the 1911 Chon-Kemin, the 1902 Atushi and the 1907 Karatag earthquakes in Central Asia were recently determined by historical seismogram modelling. For those events, we find agreement between moment magnitudes estimated from seismograms and from magnetograms. This supports the assumption of linear scaling of magnetogram amplitudes as function of M-0, which we then use to estimate the moment magnitudes for earlier large-magnitude events, that is, the 1885 Belovodskoe, 1887 Verny and 1889 Chilik earthquakes. The magnetometer data imply that the Chilik earthquake had M(W)7.9, slightly smaller than the Chon-Kemin event with M(W)8.0. The Verny earthquake, however, for which we estimate M(W)7.7, is likely larger than listed in catalogues (M7.3). Similarly, we find a larger magnitude M(W)7.6 (instead of the previous M6.9) for the Belovodskoe earthquake, but this remains uncertain due to measurement imprecision. KW - Earthquake source observations KW - Seismicity and tectonics KW - Intraplate processes Y1 - 2018 U6 - https://doi.org/10.1093/gji/ggy377 SN - 0956-540X SN - 1365-246X VL - 215 IS - 3 SP - 1824 EP - 1840 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Hendriyana, Andri A1 - Bauer, Klaus A1 - Muksin, Umar A1 - Weber, Michael T1 - AIC-based diffraction stacking for local earthquake locations at the Sumatran Fault (Indonesia) JF - Geophysical journal international N2 - We present a new workflow for the localization of seismic events which is based on a diffraction stacking approach. In order to address the effects from complex source radiation patterns, we suggest to compute diffraction stacking from a characteristic function (CF) instead of stacking the original waveform data. A new CF, which is called in the following mAIC (modified from Akaike Information Criterion) is proposed. We demonstrate that both P- and S-wave onsets can be detected accurately. To avoid cross-talk between P and S waves due to inaccurate velocity models, we separate the P and S waves from the mAIC function by making use of polarization attributes. Then, the final image function is represented by the largest eigenvalue as a result of the covariance analysis between P-and S-image functions. Results from synthetic experiments show that the proposed diffraction stacking provides reliable results. The workflow of the diffraction stacking method was finally applied to local earthquake data from Sumatra, Indonesia. Recordings from a temporary network of 42 stations deployed for nine months around the Tarutung pull-apart basin were analysed. The seismic event locations resulting from the diffraction stacking method align along a segment of the Sumatran Fault. A more complex distribution of seismicity is imaged within and around the Tarutung basin. Two lineaments striking N-S were found in the centre of the Tarutung basin which support independent results from structural geology. KW - Time-series analysis KW - Body waves KW - Computational seismology KW - Earthquake source observations KW - Seismicity and tectonics Y1 - 2018 U6 - https://doi.org/10.1093/gji/ggy045 SN - 0956-540X SN - 1365-246X VL - 213 IS - 2 SP - 952 EP - 962 PB - Oxford Univ. Press CY - Oxford ER -