TY - JOUR A1 - Zaks, Michael A. A1 - Pikovskij, Arkadij A1 - Kurths, Jürgen T1 - Symbolic dynamics behind the singular continuous power spectra of continuous flows Y1 - 1998 ER - TY - JOUR A1 - Zaks, Michael A. A1 - Pikovskij, Arkadij A1 - Kurths, Jürgen T1 - On the correlation dimension of the spectral measure for the Thue-Morse sequence Y1 - 1997 ER - TY - JOUR A1 - Zaks, Michael A. A1 - Rosenblum, Michael A1 - Pikovskij, Arkadij A1 - Osipov, Grigory V. A1 - Kurths, Jürgen T1 - Phase synchronization of chaotic oscillations in terms of periodic orbits Y1 - 1997 SN - 1054-1500 ER - TY - JOUR A1 - Zamora-Lopez, Gorka A1 - Zhou, Changsong A1 - Kurths, Jürgen T1 - Graph analysis of cortical networks reveals complex anatomical communication substrate N2 - Sensory information entering the nervous system follows independent paths of processing such that specific features are individually detected. However, sensory perception, awareness, and cognition emerge from the combination of information. Here we have analyzed the corticocortical network of the cat, looking for the anatomical substrate which permits the simultaneous segregation and integration of information in the brain. We find that cortical communications are mainly governed by three topological factors of the underlying network: (i) a large density of connections, (ii) segregation of cortical areas into clusters, and (iii) the presence of highly connected hubs aiding the multisensory processing and integration. Statistical analysis of the shortest paths reveals that, while information is highly accessible to all cortical areas, the complexity of cortical information processing may arise from the rich and intricate alternative paths in which areas can influence each other. Y1 - 2009 UR - http://ojps.aip.org/chaos/ U6 - https://doi.org/10.1063/1.3089559 SN - 1054-1500 ER - TY - JOUR A1 - Zemanova, Lucia A1 - Zhou, Changsong A1 - Kurths, Jürgen T1 - Structural and functional clusters of complex brain networks JF - Physica, D, Nonlinear phenomena N2 - Recent research using the complex network approach has revealed a rich and complicated network topology in the cortical connectivity of mammalian brains. It is of importance to understand the implications of such complex network structures in the functional organization of the brain activities. Here we study this problem from the viewpoint of dynamical complex networks. We investigate synchronization dynamics on the corticocortical network of the cat by modeling each node (cortical area) of the network with a sub-network of interacting excitable neurons. We find that the network displays clustered synchronization behavior, and the dynamical clusters coincide with the topological community structures observed in the anatomical network. Our results provide insights into the relationship between the global organization and the functional specialization of the brain cortex. KW - cortical network KW - anatomical connectivity KW - functional connectivity KW - topological community KW - dynamical cluster Y1 - 2006 U6 - https://doi.org/10.1016/j.physd.2006.09.008 SN - 0167-2789 SN - 1872-8022 VL - 224 IS - 1-2 SP - 202 EP - 212 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Zhang, H. A1 - Hu, B. A1 - Hu, G. A1 - Ouyang, Q. A1 - Kurths, Jürgen T1 - Turbulence control by developing a spiral wave with a periodic signal injection in the complex Ginzburg-Laundau equation Y1 - 2002 ER - TY - JOUR A1 - Zhou, Changsong A1 - Kurths, Jürgen T1 - Noise-sustained and controlled synchronization of stirred excitable media by external forcing N2 - Most of the previous studies on constructive effects of noise in spatially extended systems have focused on static media, e.g., of the reaction diffusion type. Because many active chemical or biological processes occur in a fluid environment with mixing, we investigate here the interplay among noise, excitability, mixing and external forcing in excitable media advected by a chaotic flow, in a two-dimensional FitzHugh-Nagumo model described by a set of reaction- advection-diffusion equations. In the absence of external forcing, noise may generate sustained coherent oscillations of the media in a range of noise intensities and stirring rates. We find that these noise-sustained oscillations can be synchronized by external periodic signals much smaller than the threshold. Analysis of the locking regions in the parameter space of the signal period, stirring rate and noise intensity reveals that the mechanism underlying the synchronization behaviour is a matching between the time scales of the forcing signal and the noise-sustained oscillations. The results demonstrate that, in the presence of a suitable level of noise, the stirred excitable media act as self-sustained oscillatory systems and become much easier to be entrained by weak external forcing. Our results may be verified in experiments and are useful to understand the synchronization of population dynamics of oceanic ecological systems by annual cycles Y1 - 2005 SN - 1367-2630 ER - TY - JOUR A1 - Zhou, Changsong A1 - Kurths, Jürgen T1 - Resonant patterns in noisy active media N2 - We investigate noise-controlled resonant response of active media to weak periodic forcing, both in excitable and oscillatory regimes. In the excitable regime, we find that noise-induced irregular wave structures can be reorganized into frequency-locked resonant patterns by weak signals with suitable frequencies. The resonance occurs due to a matching condition between the signal frequency and the noise-induced inherent time scale of the media. m:1 resonant regions similar to the Arnold tongues in frequency locking of self-sustained oscillatory media are observed. In the self-sustained oscillatory regime, noise also controls the oscillation frequency and reshapes significantly the Arnold tongues. The combination of noise and weak signal thus could provide an efficient tool to manipulate active extended systems in experiments Y1 - 2004 SN - 1063-651X ER - TY - JOUR A1 - Zhou, Changsong A1 - Kurths, Jürgen T1 - Dynamical weights and enhanced synchronization in adaptive complex networks N2 - Dynamical organization of connection weights is studied in scale-free networks of chaotic oscillators, where the coupling strength of a node from its neighbors develops adaptively according to the local synchronization property between the node and its neighbors. We find that when complete synchronization is achieved, the coupling strength becomes weighted and correlated with the topology due to a hierarchical transition to synchronization in heterogeneous networks. Importantly, such an adaptive process enhances significantly the synchronizability of the networks, which could have meaningful implications in the manipulation of dynamical networks Y1 - 2006 UR - http://link.aps.org/doi/10.1103/PhysRevLett.96.164102 U6 - https://doi.org/10.1103/Physrevlett.96.164102 ER - TY - JOUR A1 - Zhou, Changsong A1 - Kurths, Jürgen T1 - Hierarchical synchronization in complex networks with heterogeneous degrees N2 - We study synchronization behavior in networks of coupled chaotic oscillators with heterogeneous connection degrees. Our focus is on regimes away from the complete synchronization state, when the coupling is not strong enough, when the oscillators are under the influence of noise or when the oscillators are nonidentical. We have found a hierarchical organization of the synchronization behavior with respect to the collective dynamics of the network. Oscillators with more connections (hubs) are synchronized more closely by the collective dynamics and constitute the dynamical core of the network. The numerical observation of this hierarchical synchronization is supported with an analysis based on a mean field approximation and the master stability function. (C) 2006 American Institute of Physics Y1 - 2006 UR - http://scitation.aip.org/getpdf/servlet/ GetPDFServlet?filetype=pdf&id=CHAOEH000016000001015104000001&idtype=cvips&doi=10.1063/1.2150381&prog=normal U6 - https://doi.org/10.1063/1.2150381 SN - 1054-1500 ER - TY - JOUR A1 - Zhou, Changsong A1 - Kurths, Jürgen T1 - Noise-induced phase synchronization and synchronization transitions in chaotic oscillators Y1 - 2002 ER - TY - JOUR A1 - Zhou, Changsong A1 - Kurths, Jürgen A1 - Hu, B. T1 - Array-enhanced coherence resonance: Nontrivial effects of heterogeneity and spatial independence of noise Y1 - 2001 ER - TY - JOUR A1 - Zhou, Changsong A1 - Kurths, Jürgen A1 - Kiss, Istvan Z. A1 - Hudson, J. L. T1 - Noise-enhanced phase synchronization of chaotic oscillators Y1 - 2002 ER - TY - JOUR A1 - Zhou, Changsong A1 - Motter, Adilson E. A1 - Kurths, Jürgen T1 - Universality in the synchronization of weighted random networks N2 - Realistic networks display not only a complex topological structure, but also a heterogeneous distribution of weights in the connection strengths. Here we study synchronization in weighted complex networks and show that the synchronizability of random networks with a large minimum degree is determined by two leading parameters: the mean degree and the heterogeneity of the distribution of node's intensity, where the intensity of a node, defined as the total strength of input connections, is a natural combination of topology and weights. Our results provide a possibility for the control of synchronization in complex networks by the manipulation of a few parameters Y1 - 2006 UR - http://prl.aps.org/pdf/PRL/v96/i3/e034101 U6 - https://doi.org/10.1103/Physrevlett.96.034101 ER - TY - JOUR A1 - Zhou, Changsong A1 - Zemanova, Lucia A1 - Zamora, Gorka A1 - Hilgetag, Claus C. A1 - Kurths, Jürgen T1 - Hierarchical organization unveiled by functional connectivity in complex brain networks JF - Physical review letters N2 - How do diverse dynamical patterns arise from the topology of complex networks? We study synchronization dynamics in the cortical brain network of the cat, which displays a hierarchically clustered organization, by modeling each node (cortical area) with a subnetwork of interacting excitable neurons. We find that in the biologically plausible regime the dynamics exhibits a hierarchical modular organization, in particular, revealing functional clusters coinciding with the anatomical communities at different scales. Our results provide insights into the relationship between network topology and functional organization of complex brain networks. Y1 - 2006 U6 - https://doi.org/10.1103/PhysRevLett.97.238103 SN - 0031-9007 SN - 1079-7114 VL - 97 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Ziehmann, Christine A1 - Smith, L. A1 - Kurths, Jürgen T1 - The bootstrap and lyapunov exponents in deterministic chaos Y1 - 1999 ER - TY - JOUR A1 - Ziehmann, Christine A1 - Smith, Leonard A. A1 - Kurths, Jürgen T1 - Localized Lyapunov exponents and the prediction of predictability Y1 - 2000 ER - TY - JOUR A1 - Zolotova, Nadezhda V. A1 - Ponyavin, Dmitri I. A1 - Marwan, Norbert A1 - Kurths, Jürgen T1 - Long-term asymmetry in the wings of the butterfly diagram N2 - Aims. Sunspot distribution in the northern and southern solar hemispheres exibit striking synchronous behaviour on the scale of a Schwabe cycle. However, sometimes the bilateral symmetry of the Butterfly diagram relative to the solar equatorial plane breaks down. The investigation of this phenomenon is important to explaining the almost-periodic behaviour of solar cycles. Methods. We use cross-recurrence plots for the study of the time-varying phase asymmetry of the northern and southern hemisphere and compare our results with the latitudinal distribution of the sunspots. Results. We observe a long-term persistence of phase leading in one of the hemispheres, which lasts almost 4 solar cycles and probably corresponds to the Gleissberg cycle. Long-term variations in the hemispheric-leading do not demonstrate clear periodicity but are strongly anti-correlated with the long-term variations in the magnetic equator. Y1 - 2009 UR - http://www.aanda.org/ U6 - https://doi.org/10.1051/0004-6361/200811430 SN - 0004-6361 ER - TY - JOUR A1 - Zou, Yong A1 - Thiel, M. A1 - Romano, Maria Carmen A1 - Kurths, Jürgen A1 - Bi, Q. T1 - Shrimp structure and associated dynamics in parametrically excited oscillators JF - International journal of bifurcation and chaos : in applied sciences and engineering N2 - We investigate the bifurcation structures in a two-dimensional parameter space (PS) of a parametrically excited system with two degrees of freedom both analytically and numerically. By means of the Renyi entropy of second order K-2, which is estimated from recurrence plots, we uncover that regions of chaotic behavior are intermingled with many complex periodic windows, such as shrimp structures in the PS. A detailed numerical analysis shows that, the stable solutions lose stability either via period doubling, or via intermittency when the parameters leave these shrimps in different directions, indicating different bifurcation properties of the boundaries. The shrimps of different sizes offer promising ways to control the dynamics of such a complex system. KW - bifurcation analysis KW - recurrence plot KW - period doubling KW - intermittency Y1 - 2006 U6 - https://doi.org/10.1142/S0218127406016987 SN - 0218-1274 VL - 16 IS - 12 SP - 3567 EP - 3579 PB - World Scientific Publ. Co CY - Singapore ER - TY - JOUR A1 - Zöller, Gert A1 - Hainzl, Sebastian A1 - Kurths, Jürgen T1 - Observation of growing correlation length as an indicator for critical point behavior prior to large earthquakes Y1 - 2001 ER -