TY - JOUR A1 - Müller, Juliane A1 - Müller, Steffen A1 - Stoll, Josefine A1 - Fröhlich, K. A1 - Otto, Christoph A1 - Mayer, Frank T1 - Back pain prevalence in adolescent athletes JF - Scandinavian journal of medicine & science in sports N2 - The research aimed to investigate back pain (BP) prevalence in a large cohort of young athletes with respect to age, gender, and sport discipline. BP (within the last 7days) was assessed with a face scale (face 1-2=no pain; face 3-5=pain) in 2116 athletes (m/f 61%/39%; 13.3 +/- 1.7years; 163.0 +/- 11.8cm; 52.6 +/- 13.9kg; 4.9 +/- 2.7 training years; 8.4 +/- 5.7 training h/week). Four different sports categories were devised (a: combat sports, b: game sports; c: explosive strength sport; d: endurance sport). Analysis was described descriptively, regarding age, gender, and sport. In addition, 95% confidence intervals (CI) were calculated. About 168 (8%) athletes were allocated into the BP group. About 9% of females and 7% of males reported BP. Athletes, 11-13years, showed a prevalence of 2-4%; while prevalence increased to 12-20% in 14- to 17-year olds. Considering sport discipline, prevalence ranged from 3% (soccer) to 14% (canoeing). Prevalences in weight lifting, judo, wrestling, rowing, and shooting were 10%; in boxing, soccer, handball, cycling, and horse riding, 6%. 95% CI ranged between 0.08-0.11. BP exists in adolescent athletes, but is uncommon and shows no gender differences. A prevalence increase after age 14 is obvious. Differentiated prevention programs in daily training routines might address sport discipline-specific BP prevalence. KW - Young athletes KW - back pain KW - prevalence KW - types of sports Y1 - 2017 U6 - https://doi.org/10.1111/sms.12664 SN - 0905-7188 SN - 1600-0838 VL - 27 SP - 448 EP - 454 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Müller, Steffen A1 - Stoll, Josefine A1 - Cassel, Michael A1 - Mayer, Frank T1 - Trunk Muscle Activity during Drop Jump Performance in Adolescent Athletes with Back Pain JF - Frontiers in physiology N2 - In the context of back pain, great emphasis has been placed on the importance of trunk stability, especially in situations requiring compensation of repetitive, intense loading induced during high-performance activities, e.g., jumping or landing. This study aims to evaluate trunk muscle activity during drop jump in adolescent athletes with back pain (BP) compared to athletes without back pain (NBP). Eleven adolescent athletes suffering back pain (BP: m/f: n = 4/7; 15.9 ± 1.3 y; 176 ± 11 cm; 68 ± 11 kg; 12.4 ± 10.5 h/we training) and 11 matched athletes without back pain (NBP: m/f: n = 4/7; 15.5 ± 1.3 y; 174 ± 7 cm; 67 ± 8 kg; 14.9 ± 9.5 h/we training) were evaluated. Subjects conducted 3 drop jumps onto a force plate (ground reaction force). Bilateral 12-lead SEMG (surface Electromyography) was applied to assess trunk muscle activity. Ground contact time [ms], maximum vertical jump force [N], jump time [ms] and the jump performance index [m/s] were calculated for drop jumps. SEMG amplitudes (RMS: root mean square [%]) for all 12 single muscles were normalized to MIVC (maximum isometric voluntary contraction) and analyzed in 4 time windows (100 ms pre- and 200 ms post-initial ground contact, 100 ms pre- and 200 ms post-landing) as outcome variables. In addition, muscles were grouped and analyzed in ventral and dorsal muscles, as well as straight and transverse trunk muscles. Drop jump ground reaction force variables did not differ between NBP and BP (p > 0.05). Mm obliquus externus and internus abdominis presented higher SEMG amplitudes (1.3–1.9-fold) for BP (p < 0.05). Mm rectus abdominis, erector spinae thoracic/lumbar and latissimus dorsi did not differ (p > 0.05). The muscle group analysis over the whole jumping cycle showed statistically significantly higher SEMG amplitudes for BP in the ventral (p = 0.031) and transverse muscles (p = 0.020) compared to NBP. Higher activity of transverse, but not straight, trunk muscles might indicate a specific compensation strategy to support trunk stability in athletes with back pain during drop jumps. Therefore, exercises favoring the transverse trunk muscles could be recommended for back pain treatment. KW - SEMG-pattern KW - back pain KW - pre-activity KW - drop jump KW - neuromuscular KW - trunk KW - performance KW - young athletes Y1 - 2017 U6 - https://doi.org/10.3389/fphys.2017.00274 SN - 1664-042X VL - 8 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Müller, Steffen A1 - Stoll, Josefine A1 - Mueller, Juliane A1 - Cassel, Michael A1 - Mayer, Frank T1 - Trunk Muscle Activity during Drop Jump Performance in Adolescent Athletes with Back Pain JF - Frontiers in physiology N2 - In the context of back pain, great emphasis has been placed on the importance of trunk stability, especially in situations requiring compensation of repetitive, intense loading induced during high-performance activities, e.g., jumping or landing. This study aims to evaluate trunk muscle activity during drop jump in adolescent athletes with back pain (BP) compared to athletes without back pain (NBP). Eleven adolescent athletes suffering back pain (BP: m/f: n = 4/7; 15.9 +/- 1.3 y; 176 +/- 11 cm; 68 +/- 11 kg; 12.4 +/- 10.5 h/we training) and 11 matched athletes without back pain (NBP: m/f: n = 4/7; 15.5 +/- 1.3 y; 174 +/- 7 cm; 67 +/- 8 kg; 14.9 +/- 9.5 h/we training) were evaluated. Subjects conducted 3 drop jumps onto a force plate (ground reaction force). Bilateral 12-lead SEMG (surface Electromyography) was applied to assess trunk muscle activity. Ground contact time [ms], maximum vertical jump force [N], jump time [ms] and the jump performance index [m/s] were calculated for drop jumps. SEMG amplitudes (RMS: root mean square [%]) for all 12 single muscles were normalized toMIVC (maximum isometric voluntary contraction) and analyzed in 4 time windows (100 ms pre- and 200 ms post-initial ground contact, 100 ms pre- and 200 ms post-landing) as outcome variables. In addition, muscles were grouped and analyzed in ventral and dorsal muscles, as well as straight and transverse trunk muscles. Drop jump ground reaction force variables did not differ between NBP and BP (p > 0.05). Mm obliquus externus and internus abdominis presented higher SEMG amplitudes (1.3-1.9-fold) for BP (p < 0.05). Mm rectus abdominis, erector spinae thoracic/lumbar and latissimus dorsi did not differ (p > 0.05). The muscle group analysis over the whole jumping cycle showed statistically significantly higher SEMG amplitudes for BP in the ventral (p = 0.031) and transverse muscles (p = 0.020) compared to NBP. Higher activity of transverse, but not straight, trunk muscles might indicate a specific compensation strategy to support trunk stability in athletes with back pain during drop jumps. Therefore, exercises favoring the transverse trunk muscles could be recommended for back pain treatment. KW - SEMG-pattern KW - back pain KW - pre-activity KW - drop jump KW - neuromuscular KW - trunk KW - performance KW - young athletes Y1 - 2017 U6 - https://doi.org/10.3389/fphys.2017.00274 SN - 1664-042X VL - 8 SP - 124 EP - 132 PB - Frontiers Research Foundation CY - Lausanne ER -