TY - THES A1 - Möser, Christin T1 - Modular DNA constructs for oligovalent bio-enhancement and functional screening T1 - Modulare DNA-Konstrukte für oligovalente Bio-Verstärkung und funktionelles Screening N2 - Deoxyribonucleic acid (DNA) nanostructures enable the attachment of functional molecules to nearly any unique location on their underlying structure. Due to their single-base-pair structural resolution, several ligands can be spatially arranged and closely controlled according to the geometry of their desired target, resulting in optimized binding and/or signaling interactions. This dissertation covers three main projects. All of them use variations of functionalized DNA nanostructures that act as platform for oligovalent presentation of ligands. The purpose of this work was to evaluate the ability of DNA nanostructures to precisely display different types of functional molecules and to consequently enhance their efficacy according to the concept of multivalency. Moreover, functionalized DNA structures were examined for their suitability in functional screening assays. The developed DNA-based compound ligands were used to target structures in different biological systems. One part of this dissertation attempted to bind pathogens with small modified DNA nanostructures. Pathogens like viruses and bacteria are known for their multivalent attachment to host cells membranes. By blocking their receptors for recognition and/or fusion with their targeted host in an oligovalent manner, the objective was to impede their ability to adhere to and invade cells. For influenza A, only enhanced binding of oligovalent peptide-DNA constructs compared to the monovalent peptide could be observed, whereas in the case of respiratory syncytial virus (RSV), binding as well as blocking of the target receptors led to an increased inhibition of infection in vitro. In the final part, the ability of chimeric DNA-peptide constructs to bind to and activate signaling receptors on the surface of cells was investigated. Specific binding of DNA trimers, conjugated with up to three peptides, to EphA2 receptor expressing cells was evaluated in flow cytometry experiments. Subsequently, their ability to activate these receptors via phosphorylation was assessed. EphA2 phosphorylation was significantly increased by DNA trimers carrying three peptides compared to monovalent peptide. As a result of activation, cells underwent characteristic morphological changes, where they "round up" and retract their periphery. The results obtained in this work comprehensively prove the capability of DNA nanostructures to serve as stable, biocompatible, controllable platforms for the oligovalent presentation of functional ligands. Functionalized DNA nanostructures were used to enhance biological effects and as tool for functional screening of bio-activity. This work demonstrates that modified DNA structures have the potential to improve drug development and to unravel the activation of signaling pathways. N2 - Desoxyribonukleinsäure (DNS, engl. DNA) - Nanostrukturen ermöglichen die Anbringung funktioneller Moleküle an nahezu jede einzigartige Stelle der zugrunde liegenden Struktur. Aufgrund der Basenpaar-Strukturauflösung von DNA können mehrere Moleküle (z.B. Liganden) entsprechend der Geometrie ihres gewünschten Ziels räumlich angeordnet und genau kontrolliert werden, was zu optimierten Bindungs- und/oder Signalwechselwirkungen führt. Diese Dissertation umfasst drei Hauptprojekte. Alle Projekte verwenden Varianten von funktionalisierten DNA-Nanostrukturen, die als Plattform für die oligovalente Präsentation von Liganden dienen. Ziel der vorliegenden Arbeit war es, die Fähigkeit von DNA-Nanostrukturen zur präzisen Positionierung verschiedener Arten von funktionellen Molekülen zu evaluieren und folglich die Wirksamkeit der Moleküle gemäß dem Konzept der Multivalenz zu erhöhen. Außerdem wurde untersucht, wie funktionalisierte DNA-Strukturen in verschiedenen Verfahren zur Erforschung von biologischen Interaktionen eingesetzt werden können. Die entwickelten DNA-basierten Liganden wurden verwendet, um Strukturen auf verschiedenen biologischen Systemen gezielt zu binden. In einem Teil dieser Dissertation wurde versucht, Krankheitserreger mit kleinen modifizierten DNA-Nanostrukturen zu binden. Pathogene, wie Viren und Bakterien, sind für ihre multivalente Anheftung an Wirtszellmembranen bekannt. Durch die oligovalente Blockierung ihrer Rezeptoren für die Erkennung und/oder Fusion mit ihrem Wirt sollte ihre Fähigkeit, sich an Zielzellen anzuheften und in diese einzudringen, beeinträchtigt werden. Bei Influenza A Viren konnte nur eine verstärkte Bindung von oligovalenten Peptid-DNA-Konstrukten im Vergleich zu monovalenten Peptiden beobachtet werden, wohingegen bei Respiratorischen Synzytial-Viren (RSV) sowohl die Bindung als auch die Blockierung der Zielrezeptoren zu einer verstärkten Hemmung der Infektion in vitro führte. Im letzten Teil wurden chimäre DNA-Peptidkonstrukte auf ihre Fähigkeit, an Signalrezeptoren auf der Oberfläche von Zellen zu binden und diese zu aktivieren, getestet. Die spezifische Bindung von mit bis zu drei Peptiden konjugierten DNA-Trimeren an EphA2-Rezeptor-exprimierende Zellen wurde in Durchflusszytometrie-Experimenten untersucht. Anschließend wurde ihre Fähigkeit, diese Rezeptoren durch Phosphorylierung zu aktivieren, beurteilt. Die Phosphorylierung von EphA2 war durch DNA-Trimere, die drei Peptide trugen, im Vergleich zu monovalenten Peptiden signifikant erhöht. Infolge der Aktivierung kommt es zu charakteristischen morphologischen Veränderungen der Zellen, bei denen diese ihre Peripherie "abrunden" und zurückziehen. Die in dieser Arbeit erzielten Ergebnisse beweisen umfassend die Fähigkeit von DNA-Nanostrukturen, als stabile, biokompatible, kontrollierbare Plattformen für die oligovalente Präsentation funktioneller Liganden zu fungieren. Funktionalisierte DNA-Nanostrukturen wurden zur Verstärkung biologischer Effekte und als Werkzeug für das funktionelle Screening von biologischen Interaktionen verwendet. Diese Arbeit zeigt, dass modifizierte DNA-Strukturen das Potenzial haben, die Medikamentenentwicklung zu verbessern und die Aktivierung von Signalwegen zu entschlüsseln. KW - DNA KW - multivalency KW - influenza KW - respiratory syncytial virus KW - nanostructure KW - ephrin KW - DNA KW - Ephrin KW - Influenza KW - Multivalenz KW - Nanostruktur KW - Respiratorisches Synzytial-Virus KW - DNS Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-507289 ER - TY - THES A1 - Schick, Daniel T1 - Ultrafast lattice dynamics in photoexcited nanostructures : femtosecond X-ray diffraction with optimized evaluation schemes T1 - Ultraschnelle Gitterdynamik in optisch angeregten Nanostrukturen : Femtosekunden-Röntgendiffraktion mit optimierten Auswerteroutinen N2 - Within the course of this thesis, I have investigated the complex interplay between electron and lattice dynamics in nanostructures of perovskite oxides. Femtosecond hard X-ray pulses were utilized to probe the evolution of atomic rearrangement directly, which is driven by ultrafast optical excitation of electrons. The physics of complex materials with a large number of degrees of freedom can be interpreted once the exact fingerprint of ultrafast lattice dynamics in time-resolved X-ray diffraction experiments for a simple model system is well known. The motion of atoms in a crystal can be probed directly and in real-time by femtosecond pulses of hard X-ray radiation in a pump-probe scheme. In order to provide such ultrashort X-ray pulses, I have built up a laser-driven plasma X-ray source. The setup was extended by a stable goniometer, a two-dimensional X-ray detector and a cryogen-free cryostat. The data acquisition routines of the diffractometer for these ultrafast X-ray diffraction experiments were further improved in terms of signal-to-noise ratio and angular resolution. The implementation of a high-speed reciprocal-space mapping technique allowed for a two-dimensional structural analysis with femtosecond temporal resolution. I have studied the ultrafast lattice dynamics, namely the excitation and propagation of coherent phonons, in photoexcited thin films and superlattice structures of the metallic perovskite SrRuO3. Due to the quasi-instantaneous coupling of the lattice to the optically excited electrons in this material a spatially and temporally well-defined thermal stress profile is generated in SrRuO3. This enables understanding the effect of the resulting coherent lattice dynamics in time-resolved X-ray diffraction data in great detail, e.g. the appearance of a transient Bragg peak splitting in both thin films and superlattice structures of SrRuO3. In addition, a comprehensive simulation toolbox to calculate the ultrafast lattice dynamics and the resulting X-ray diffraction response in photoexcited one-dimensional crystalline structures was developed in this thesis work. With the powerful experimental and theoretical framework at hand, I have studied the excitation and propagation of coherent phonons in more complex material systems. In particular, I have revealed strongly localized charge carriers after above-bandgap femtosecond photoexcitation of the prototypical multiferroic BiFeO3, which are the origin of a quasi-instantaneous and spatially inhomogeneous stress that drives coherent phonons in a thin film of the multiferroic. In a structurally imperfect thin film of the ferroelectric Pb(Zr0.2Ti0.8)O3, the ultrafast reciprocal-space mapping technique was applied to follow a purely strain-induced change of mosaicity on a picosecond time scale. These results point to a strong coupling of in- and out-of-plane atomic motion exclusively mediated by structural defects. N2 - Im Rahmen dieser Arbeit habe ich mich mit den komplexen Wechselwirkungen zwischen Elektronen- und Gitterdynamik in oxidischen Perowskit-Nanostrukturen beschäftigt. Dazu wurden verschiedene Proben mit intensiven, ultrakurzen Laserpulsen angeregt. Um die zeitliche Entwicklung der induzierten atomaren Umordnung zu untersuchen, wurden Femtosekunden-Pulse harter Röntgenstrahlung genutzt. Zunächst wurde die ultraschnelle Gitterdynamik in einfachen Modellsystemen mit zeitaufgelösten Röntgendiffraktionsexperimenten untersucht, um im Anschluss ähnliche Experimente an komplexeren Materialien mit mehreren Freiheitsgraden interpretieren zu können. Die Bewegung der Atome in einem Kristall kann über Anrege-Abtast-Verfahren direkt mit gepulster, harter Röntgenstrahlung gemessen werden. Die Dauer der Röntgenpulse muss dafür einige hundert Femtosekunden kurz sein. Um diese ultrakurzen Röntgenpulse zu erzeugen, habe ich eine lasergetriebene Plasma-Röntgenquelle aufgebaut. Der Aufbau wurde um ein stabiles Goniometer, einen zweidimensionalen Röntgendetektor und einen kryogenfreien Kryostat erweitert und in Bezug auf das Signal-zu-Rausch-Verhältnis und die Winkelauflösung optimiert. Durch die Entwicklung einer schnellen Methode zur Vermessung des reziproken Raums konnte erstmals an solch einer Quelle eine zweidimensionale Strukturanalyse mit Femtosekunden-Zeitauflösung realisiert werden. Die Anregung und Ausbreitung von kohärenten Phononen habe ich in optisch angeregten Dünnfilm- und Übergitterstrukturen untersucht. Eine entscheidende Rolle spielen dabei metallische SrRuO3 Schichten. Durch die quasi-instantane Kopplung des Gitters an die optisch angeregten Elektronen in SrRuO3 wird ein räumlich und zeitlich wohldefiniertes Druckprofil erzeugt. Dadurch kann der Einfluss der resultierenden kohärenten Gitterdynamik auf die zeitaufgelösten Röntgendiffraktionsdaten im Detail verstanden werden. Beobachtet wurde z.B. das Auftreten einer transienten Aufspaltung eines Bragg-Reflexes bei Dünnfilm- und Übergitterstrukturen aus SrRuO3. Außerdem wurde eine umfangreiche Simulationsumgebung entwickelt, mit deren Hilfe die ultraschnelle Dynamik und die dazugehörigen Röntgendiffraktionssignale in optisch angeregten eindimensionalen Kristallstrukturen berechnet werden können. Der von mir entwickelte experimentelle Aufbau sowie das Simulationspaket zur Datenanalyse und -interpretation wurden anschließend für die Untersuchung kohärenter Phononen in komplexeren Materialsystemen eingesetzt. Im Speziellen konnte ich in multiferroischem BiFeO3 eine stark lokalisierte Ladungsträgerverteilung nach einer optischen Femtosekunden-Anregung nachweisen. Sie ist die Ursache für einen quasi-instantanen und räumlich inhomogenen Druck, der die kohärenten Phononen in einem dünnen Film dieses Multiferroikums erzeugt. Außerdem habe ich die ultraschnelle Vermessung des reziproken Raums angewendet, um eine verzerrungsinduzierte Veränderung der Mosaizität in einem strukturell unvollkommenen Film aus ferroelektrischem Pb(Zr0.2Ti0.8)O3 zu verfolgen. Die Ergebnisse deuten auf eine ausschließlich durch strukturelle Defekte vermittelte Kopplung der atomaren Bewegungen parallel und senkrecht zur Flächennormalen des Filmes hin. KW - ultraschnelle Röntgendiffraktion KW - Gitterdynamik KW - Nanostruktur KW - optische Anregung KW - Perowskit KW - ultrafast X-ray diffraction KW - lattice dynamics KW - nanostructure KW - photoexcitation KW - perovskite Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-68827 ER - TY - THES A1 - Breitenstein, Michael T1 - Ortsaufgelöster Aufbau von DNA-Nanostrukturen auf Glasoberflächen T1 - Assembly of DNA nanostructures on glass surfaces N2 - Im Fokus dieser Arbeit stand der Aufbau einer auf DNA basierenden Nanostruktur. Der universelle Vier-Buchstaben-Code der DNA ermöglicht es, Bindungen auf molekularer Ebene zu adressieren. Die chemischen und physikalischen Eigenschaften der DNA prädestinieren dieses Makromolekül für den Einsatz und die Verwendung als Konstruktionselement zum Aufbau von Nanostrukturen. Das Ziel dieser Arbeit war das Aufspannen eines DNA-Stranges zwischen zwei Fixpunkten. Hierfür war es notwendig, eine Methode zu entwickeln, welche es ermöglicht, Funktionsmoleküle als Ankerelemente ortsaufgelöst auf eine Oberfläche zu deponieren. Das Deponieren dieser Moleküle sollte dabei im unteren Mikrometermaßstab erfolgen, um den Abmaßen der DNA und der angestrebten Nanostruktur gerecht zu werden. Das eigens für diese Aufgabe entwickelte Verfahren zum ortsaufgelösten Deponieren von Funktionsmolekülen nutzt das Bindungspaar Biotin-Neutravidin. Mit Hilfe eines Rasterkraftmikroskops (AFM) wurde eine zu einem „Stift“ umfunktionierte Rasterkraftmikroskopspitze so mit der zu deponierenden „Tinte“ beladen, dass das Absetzen von Neutravidin im unteren Mikrometermaßstab möglich war. Dieses Neutravidinmolekül übernahm die Funktion als Bindeglied zwischen der biotinylierten Glasoberfläche und dem eigentlichen Adressmolekül. Das somit generierte Neutravidin-Feld konnte dann mit einem biotinylierten Adressmolekül durch Inkubation funktionalisiert werden. Namensgebend für dieses Verfahren war die Möglichkeit, Neutravidin mehrmals zu deponieren und zu adressieren. Somit ließ sich sequenziell ein Mehrkomponenten-Feld aufbauen. Die Einschränkung, mit einem AFM nur eine Substanz deponieren zu können, wurde so umgangen. Ferner mußten Ankerelemente geschaffen werden, um die DNA an definierten Punkten immobilisieren zu können. Die Bearbeitung der DNA erfolgte mit molekularbiologischen Methoden und zielte darauf ab, einen DNA-Strang zu generieren, welcher an seinen beiden Enden komplementäre Adressequenzen enthält, um gezielt mit den oberflächenständigen Ankerelementen binden zu können. Entsprechend der Geometrie der mit dem AFM erzeugten Fixpunkte und den oligonukleotidvermittelten Adressen kommt es zur Ausbildung einer definierten DNA-Struktur. Mit Hilfe von fluoreszenzmikroskopischen Methoden wurde die aufgebaute DNA-Nanostruktur nachgewiesen. Der Nachweis der nanoskaligen Interaktion von DNA-bindenden Molekülen mit der generierten DNA-Struktur wurde durch die Bindung von PNA (peptide nucleic acid) an den DNA-Doppelstrang erbracht. Diese PNA-Bindung stellt ihrerseits ein funktionales Strukturelement im Nanometermaßstab dar und wird als Nanostrukturbaustein verstanden. N2 - The main aim of this work was the development of a DNA-based nanostructure. The universal four-letter code of DNA allows addressing bonds at the molecular level. The chemical and physical property of DNA makes this macromolecule an ideal candidate as a construction element for nanostructures. The aim of this work was to span a DNA strand between two fixed points. For this purpose it was necessary to develop a method which makes it possible to deposit functional molecules as anchoring elements with highly spatial resolution on a surface. These molecules should be immobilized on the lower micrometer scale to meet the requirements of the desired nanostructure. The method that has been developed for this task, which enables to deposit functional molecules, uses the binding pair biotin-neutravidin. Using the tip of an atomic force microscope (AFM), which can be uses like a pen, it was possible to deposit neutravidin on the lower micrometer scale. This neutravidin molecule is the linking element between the biotinylated glass surface and the actual address molecule. The thus generated neutravidin field could then be functionalized with a biotinylated molecule by incubation. The method has been published as sequential spotting method because it enables a sequential functionalization of neutravidin after it has been deposited. It was so possible to build up a multi-component array. The limitation of being able to deposit only one single substance with an AFM has been circumvented. It also was necessary to create anchor elements in order to immobilize the DNA at defined positions. The processing of the DNA was carried out using molecular biological methods and aimed at generating a DNA strand, which at both ends has a complementary sequence for binding to the surface bound anchor elements. The defined structure is a result of the geometry of the fixed points, generated by the AFM. Using fluorescence microscopy, the constructed DNA nanostructure was detected. The proof of the interaction of DNA-binding molecules with the DNA structure was carried out by the binding of PNA (peptide nucleic acid), which is capable of binding to double stranded DNA. The PNA and its DNA-interaction is a functional building block in the nanometer scale and can be regarded as a promising nanostructure. KW - Nanostruktur KW - DNA KW - Rasterkraftmikroskop KW - Fluoreszenzmikroskopie KW - Oberflächenfunktionalisierung KW - nanostructure KW - DNA KW - atomic force microscope KW - fluorescence microscopy KW - surface chemistry Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-61857 ER - TY - THES A1 - Kubo, Shiori T1 - Nanostructured carbohydrate-derived carbonaceous materials T1 - Nanostrukturierte kohlenstoffbasierte Materialien aus Kohlenhydraten N2 - Nanoporous carbon materials are widely used in industry as adsorbents or catalyst supports, whilst becoming increasingly critical to the developing fields of energy storage / generation or separation technologies. In this thesis, the combined use of carbohydrate hydrothermal carbonisation (HTC) and templating strategies is demonstrated as an efficient route to nanostructured carbonaceous materials. HTC is an aqueous-phase, low-temperature (e.g. 130 – 200 °C) carbonisation, which proceeds via dehydration / poly-condensation of carbon precursors (e.g. carbohydrates and their derivatives), allowing facile access to highly functional carbonaceous materials. Whilst possessing utile, modifiable surface functional groups (e.g. -OH and -C=O-containing moieties), materials synthesised via HTC typically present limited accessible surface area or pore volume. Therefore, this thesis focuses on the development of fabrication routes to HTC materials which present enhanced textural properties and well-defined porosity. In the first discussed synthesis, a combined hard templating / HTC route was investigated using a range of sacrificial inorganic templates (e.g. mesoporous silica beads and macroporous alumina membranes (AAO)). Via pore impregnation of mesoporous silica beads with a biomass-derived carbon source (e.g. 2-furaldehyde) and subsequent HTC at 180 oC, an inorganic / carbonaceous hybrid material was produced. Removal of the template component by acid etching revealed the replication of the silica into mesoporous carbonaceous spheres (particle size ~ 5 μm), representing the inverse morphological structure of the original inorganic body. Surface analysis (e.g. FTIR) indicated a material decorated with hydrophilic (oxygenated) functional groups. Further thermal treatment at increasingly elevated temperatures (e.g. at 350, 550, 750 oC) under inert atmosphere allowed manipulation of functionalities from polar hydrophilic to increasingly non-polar / hydrophobic structural motifs (e.g. extension of the aromatic / pseudo-graphitic nature), thus demonstrating a process capable of simultaneous control of nanostructure and surface / bulk chemistry. As an extension of this approach, carbonaceous tubular nanostructures with controlled surface functionality were synthesised by the nanocasting of uniform, linear macropores of an AAO template (~ 200 nm). In this example, material porosity could be controlled, showing increasingly microporous tube wall features as post carbonisation temperature increased. Additionally, by taking advantage of modifiable surface groups, the introduction of useful polymeric moieties (i.e. grafting of thermoresponsive poly(N-isopropylacrylamide)) was also demonstrated, potentially enabling application of these interesting tubular structures in the fields of biotechnology (e.g. enzyme immobilization) and medicine (e.g. as drug micro-containers). Complimentary to these hard templating routes, a combined HTC / soft templating route for the direct synthesis of ordered porous carbonaceous materials was also developed. After selection of structural directing agents and optimisation of synthesis composition, the F127 triblock copolymer (i.e. ethylene oxide (EO)106 propylene oxide (PO)70 ethylene oxide (EO)106) / D-Fructose system was extensively studied. D-Fructose was found to be a useful carbon precursor as the HTC process could be performed at 130 oC, thus allowing access to stable micellular phase. Thermolytic template removal from the synthesised ordered copolymer / carbon composite yielded functional cuboctahedron single crystalline-like particles (~ 5 μm) with well ordered pore structure of a near perfect cubic Im3m symmetry. N2 sorption analysis revealed a predominantly microporous carbonaceous material (i.e. Type I isotherm, SBET = 257 m2g-1, 79 % microporosity) possessing a pore size of ca. 0.9 nm. The addition of a simple pore swelling additive (e.g. trimethylbenzene (TMB)) to this system was found to direct pore size into the mesopore size domain (i.e. Type IV isotherm, SBET = 116 m2g-1, 60 % mesoporosity) generating pore size of ca. 4 nm. It is proposed that in both cases as HTC proceeds to generate a polyfuran-like network, the organised block copolymer micellular phase is essentially “templated”, either via hydrogen bonding between hydrophilic poly(EO) moiety and the carbohydrate or via hydrophobic interaction between hydrophobic poly(PO) moiety and forming polyfuran-like network, whilst the additive TMB presumably interact with poly(PO) moieties, thus swelling the hydrophobic region expanding the micelle template size further into the mesopore range. N2 - Nanoporöse kohlenstoffbasierte Materialien sind in der Industrie als Adsorbentien und Katalysatorträger weit verbreitet und gewinnen im aufstrebenden Bereich der Energiespeicherung/erzeugung und für Trennverfahren an wachsender Bedeutung. In der vorliegenden Arbeit wird gezeigt, dass die Kombination aus hydrothermaler Karbonisierung von Zuckern (HTC) mit Templatierungsstrategien einen effizienten Weg zu nanostrukturierten kohlenstoffbasierten Materialien darstellt. HTC ist ein in Wasser und bei niedrigen Temperaturen (130 - 200 °C) durchgeführter Karbonisierungsprozess, bei dem Zucker und deren Derivate einen einfachen Zugang zu hochfunktionalisierten Materialien erlauben. Obwohl diese sauerstoffhaltige Funktionalitäten auf der Oberfläche besitzen, an welche andere chemische Gruppen gebunden werden könnten, was die Verwendung für Trennverfahren und in der verzögerten Wirkstofffreisetzung ermöglichen sollte, ist die mittels HTC hergestellte Kohle für solche Anwendungen nicht porös genug. Das Ziel dieser Arbeit ist es daher, Methoden zu entwickeln, um wohldefinierte Poren in solchen Materialien zu erzeugen. Hierbei führte unter anderem der Einsatz von anorganischen formgebenden mesoporösen Silikapartikeln und makroporösen Aluminiumoxid-Membranen zum Erfolg. Durch Zugabe einer Kohlenstoffquelle (z. B. 2-Furfural), HTC und anschließender Entfernung des Templats konnten poröse kohlenstoffbasierte Partikel und röhrenförmige Nanostrukturen hergestellt werden. Gleichzeitig konnte durch eine zusätzliche Nachbehandlung bei hoher Temperatur (350-750 °C) auch noch die Oberflächenfunktionalität hin zu aromatischen Systemen verschoben werden. Analog zur Formgebung durch anorganische Template konnte mit sog. Soft-Templaten, z. B. PEO-PPO-PEO Blockcopolymeren, eine funktionelle poröse Struktur induziert werden. Hierbei machte man sich die Ausbildung geordneter Mizellen mit der Kohlenstoffquelle D-Fructose zu Nutze. Das erhaltene Material wies hochgeordnete Mikroporen mit einem Durchmesser von ca. 0,9 nm auf. Dieser konnte desweiteren durch Zugabe von Quell-Additiven (z. B. Trimethylbenzol) auf 4 nm in den mesoporösen Bereich vergrößert werden. Zusammenfassend lässt sich sagen, dass beide untersuchten Synthesewege nanostrukturierte kohlenstoffbasierte Materialien mit vielfältiger Oberflächenchemie liefern, und das mittels einer bei relativ niedriger Temperatur in Wasser ablaufenden Reaktion und einer billigen, nachhaltigen Kohlenstoffquelle. Die so hergestellten Produkte eröffnen vielseitige Anwendungsmöglichkeiten, z. B. zur Molekültrennung in der Flüssigchromatographie, in der Energiespeicherung als Anodenmaterial in Li-Ionen Akkus oder Superkondensatoren, oder als Trägermaterial für die gezielte Pharmakotherapie. KW - Nanostruktur KW - Kohlenstoff KW - Kohlenhydrate KW - Templating KW - hydrothermale Carbonisierung KW - Nanostructure KW - Carbon KW - Carbohydrate KW - Templating KW - Hydrothermal carbonisation Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-53157 ER - TY - THES A1 - Yin, Chunhong T1 - The interplay of nanostructure and efficiency of polymer solar cells T1 - Einfluss der Nanostruktur auf die Effizienz von Polymer-Solarzellen N2 - The aim of this thesis is to achieve a deep understanding of the working mechanism of polymer based solar cells and to improve the device performance. Two types of the polymer based solar cells are studied here: all-polymer solar cells comprising macromolecular donors and acceptors based on poly(p-phenylene vinylene) and hybrid cells comprising a PPV copolymer in combination with a novel small molecule electron acceptor. To understand the interplay between morphology and photovoltaic properties in all-polymer devices, I compared the photocurrent characteristics and excited state properties of bilayer and blend devices with different nano-morphology, which was fine tuned by using solvents with different boiling points. The main conclusion from these complementary measurements was that the performance-limiting step is the field-dependent generation of free charge carriers, while bimolecular recombination and charge extraction do not compromise device performance. These findings imply that the proper design of the donor-acceptor heterojunction is of major importance towards the goal of high photovoltaic efficiencies. Regarding polymer-small molecular hybrid solar cells I combined the hole-transporting polymer M3EH-PPV with a novel Vinazene-based electron acceptor. This molecule can be either deposited from solution or by thermal evaporation, allowing for a large variety of layer architectures to be realized. I then demonstrated that the layer architecture has a large influence on the photovoltaic properties. Solar cells with very high fill factors of up to 57 % and an open circuit voltage of 1V could be achieved by realizing a sharp and well-defined donor-acceptor heterojunction. In the past, fill factors exceeding 50 % have only been observed for polymers in combination with soluble fullerene-derivatives or nanocrystalline inorganic semiconductors as the electron-accepting component. The finding that proper processing of polymer-vinazene devices leads to similar high values is a major step towards the design of efficient polymer-based solar cells. N2 - Ziel dieser Dissertation ist es, die grundlegende Arbeitsweise von polymerbasierten Solarzellen zu verstehen und ihre Leistungsfähigkeit zu erhöhen. Zwei Arten von organischen Solarzellen werden untersucht: Solarzellen, bei denen sowohl Elektronendonator und akzeptor auf Poly(p-phenylen-vinylen) basieren sowie Zellen, bei denen ein PPV-Copolymer als Elektronendonator und organische kleine Moleküle als Elektronenakzeptor fungierten. Um die Zusammenhänge zwischen Morphologie und photovoltaischen Eigenschaften zu verstehen, untersuchte ich Photoströme sowie die Eigenschaften angeregter Zustände in Zweischicht- und Mischsolarzellen mit unterschiedlicher Nano-Morphologie, welche durch die Verwendung von Lösungsmitteln mit unterschiedlichen Siedetemperaturen modifiziert wurde. Die Hauptschlussfolgerung aus diesen Messungen ist, dass der effizienzlimitierende Faktor die feldabhängige Generation freier Ladungsträger ist, wohingegen bimolekulare Rekombination oder die Extraktion der Ladungsträger die Leistungsfähigkeit von Polymer-Polymer- Solarzellen nicht beeinträchtigen. Diese Ergebnisse legen nahe, dass die gezielte Einstellung der Donator-Akzeptor-Grenzfläche von besonderer Bedeutung zum Erreichen hoher Effizienzen ist. In Hybridsolarzellen aus Polymeren und kleinen Molekülen kombinierte ich das lochleitende konjugierte Polymer M3EH-PPV mit einem neuartigen Vinazen-Molekül als Elektronen-akzeptor. Dieses Molekül bietet die Möglichkeit, entweder aus einer Lösung heraus verarbeitet oder im Hochvakuum verdampft zu werden, wodurch eine Vielzahl an unterschiedlichen Probenstrukturen realisiert werden kann. Dadurch konnte ich zeigen, dass die Struktur der aktiven Schicht einen großen Einfluss auf die photovoltaischen Eigenschaften hat. Die Solarzellen erreichten einen Füllfaktor von bis zu 57% und eine Kurzschluss¬spannung von 1 V. In der Vergangenheit konnten bei polymerbasierten Solarzellen Füllfaktoren über 50% nur in Verbindung mit Fullerenen oder nanokristallinen anorganischen Halbleitern als Akzeptoren erreicht werden. Das Resultat, dass bei geeigneter Präparation der Polymer-Vinazen-Schicht vergleichbare Ergebnisse erzielt werden können, ist ein bedeutender Schritt hin zu effizienteren Polymersolarzellen. KW - Nanostruktur KW - Polymer-Solarzelle KW - Effizienz KW - Morphologie KW - Polymer solar cells KW - nanostructure KW - efficiency KW - morphology Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-29054 ER - TY - THES A1 - Varykhalov, Andrei T1 - Quantum-size effects in the electronic structure of novel self-organized systems with reduced dimensionality T1 - Quantisierungseffekte in der elektronischen Struktur von neuen selbstorganisierten Systemen mit reduzierter Dimensionalität N2 - The Thesis is focused on the properties of self-organized nanostructures. Atomic and electronic properties of different systems have been investigated using methods of electron diffraction, scanning tunneling microscopy and photoelectron spectroscopy. Implementation of the STM technique (including design, construction, and tuning of the UHV experimental set-up) has been done in the framework of present work. This time-consuming work is reported to greater detail in the experimental part of this Thesis. The scientific part starts from the study of quantum-size effects in the electronic structure of a two-dimensional Ag film on the supporting substrate Ni(111). Distinct quantum well states in the sp-band of Ag were observed in photoelectron spectra. Analysis of thickness- and angle-dependent photoemission supplies novel information on the properties of the interface. For the first time the Ni(111) relative band gap was indirectly probed in the ground-state through the electronic structure of quantum well states in the adlayer. This is particularly important for Ni where valence electrons are strongly correlated. Comparison of the experiment with calculations performed in the formalism of the extended phase accumulation model gives the substrate gap which is fully consistent with the one obtained by ab-initio LDA calculations. It is, however, in controversy to the band structure of Ni measured directly by photoemission. These results lend credit to the simplest view of photoemission from Ni, assigning early observed contradictions between theory and experiments to electron correlation effects in the final state of photoemission. Further, nanosystems of lower dimensionality have been studied. Stepped surfaces W(331) and W(551) were used as one-dimensional model systems and as templates for self-organization of Au nanoclusters. Photon energy dependent photoemission revealed a surface resonance which was never observed before on W(110) which is the base plane of the terrace microsurfaces. The dispersion E(k) of this state measured on stepped W(331) and W(551) with angle-resolved photoelectron spectroscopy is modified by a strong umklapp effect. It appears as two parabolas shifted symmetrically relative to the microsurface normal by half of the Brillouin zone of the step superlattice. The reported results are very important for understanding of the electronic properties of low-dimensional nanostructures. It was also established that W(331) and W(551) can serve as templates for self-organization of metallic nanostructures. A combined study of electronic and atomic properties of sub-monolayer amounts of gold deposited on these templates have shown that if the substrate is slightly pre-oxidized and the temperature is elevated, then Au can alloy with the first monolayer of W. As a result, a nanostructure of uniform clusters of a surface alloy is produced all over the steps. Such clusters feature a novel sp-band in the vicinity of the Fermi level, which appears split into constant energy levels due to effects of lateral quantization. The last and main part of this work is devoted to large-scale reconstructions on surfaces and nanostructures self-assembled on top. The two-dimensional surface carbide W(110)/C-R(15x3) has been extensively investigated. Photoemission studies of quantum size effects in the electronic structure of this reconstruction, combined with an investigation of its surface geometry, lead to an advanced structural model of the carbide overlayer. It was discovered that W(110)/C-R(15x3) can control self-organization of adlayers into nanostructures with extremely different electronic and structural properties. Thus, it was established that at elevated temperature the R(15x3) superstructure controls the self-assembly of sub-monolayer amounts of Au into nm-wide nanostripes. Based on the results of core level photoemission, the R(15x3)-induced surface alloying which takes place between Au and W can be claimed as driving force of self-organization. The observed stripes exhibit a characteristic one-dimensional electronic structure with laterally quantized d-bands. Obviously, these are very important for applications, since dimensions of electronic devices have already stepped into the nm-range, where quantum-size phenomena must undoubtedly be considered. Moreover, formation of perfectly uniform molecular clusters of C60 was demonstrated and described in terms of the van der Waals formalism. It is the first experimental observation of two-dimensional fullerene nanoclusters with "magic numbers". Calculations of the cluster potentials using the static approach have revealed characteristic minima in the interaction energy. They are achieved for 4 and 7 molecules per cluster. The obtained "magic numbers" and the corresponding cluster structures are fully consistent with the results of the STM measurements. N2 - Die aktuelle Doktorarbeit ist auf die Eigenschaften von selbst-organisierten Nanostrukturen fokussiert. Die strukturellen und elektronischen Eigenschaften von verschiedenen Systemen wurden mit den Methoden Elektronenbeugung, Rastertunnelmikroskopie und Photoelektronenspektroskopie untersucht. Insbesondere wurde die fuer die Rastertunnelmikroskopie in situ praeparierter Proben eingesetzte Apparatur im Rahmen dieser Arbeit konstruiert und aufgebaut. Einzelheiten hierzu sind im experimentellen Kapitel zu finden. Der wissenschftliche Teil beginnt mit Untersuchungen von Quantentrogeffekten in der elektronischen Struktur einer Ag-Schicht auf Ni(111)-Substrat. Charakteristische Quantentrogzustaende im Ag-sp-Band wurden in Photoelektronenspektren beobachtet. Die Analyse von schichtdicken- und winkelabhaengiger Photoemission hat neue und wesentliche Informationen ueber die Eigenschaften des Ag/Ni-Systems geliefert. Insbesondere konnte zum ersten Mal eine relative Bandluecke im Ni-Substrat durch das Verhalten der Quantentrogzustaende indirekt vermessen werden. Das ist fuer Ni besonders wichtig, weil es sich bei Ni um ein stark korreliertes Elektronensystem handelt. Die Ergebnisse wurden mit Rechnungen auf der Basis des erweiterten Phasenmodelles verglichen. Der Vergleich ergibt eine Bandluecke, die sehr gut mit ab-initio-Rechnungen auf Basis der lokalen Elektronendichte-Naehrung uebereinstimmen. Dennoch widersprechen die Daten der Ni-Bandstruktur, die direkt mit Photoemission gemessen wird. Diese Kontroverse zeigt deutlich, dass der Unterschied zwischen Theorie und Experiment Korrelationeffekten im Endzustand der Photoemission zugeordnet werden kann. Des weiteren wurden Nanosysteme von noch niedrigerer Dimensionalitaet untersucht. Gestufte Oberflaechen W(331) und W(551) wurden als eindimensionale Modellsysteme fuer die Selbstorganisation von Au-Nanoclustern benutzt. Photonenenergieabhaengige Photoemission hat eine neue Oberflaechen-resonanz aufgedeckt, die auf der Basisebene der Terrassen dieser Systeme auftritt. Die Dispersion E(k) von diesem Zustand, die mit winkelaufgeloester Photoemission vermessen wurde, zeigt deutlich die Einwirkung von Umklapp-Effekten. Diese zeigen sich als zwei Parabeln, die relativ zu der Terrassennormale symmetrisch um die Haelfte der Oberflaechen-Brillouinzone verschoben sind. Die erzielten Ergebnisse sind sehr wichtig fuer das Verstaendnis der elektronischen Eigenschaften von eindimensionalen Nanostrukturen. Ausserdem wurde gezeigt, dass W(331) und W(551) als Vorlage fuer selbstorganisierte metallische Nanostrukturen dienen koennen. Eine kombinierte Untersuchung von strukturellen und elektronischen Eigenschaften von unter-monolagen Mengen von Au auf diesen Substraten wurde durchgefuehrt. Es hat sich gezeigt, dass Au mit dem Substrat an der Oberflaeche legieren kann, wenn die Oberflaeche ein wenig oxidiert und die Temperatur erhoert ist. Als Folge formiert sich auf den Stufen eine Nanostruktur von gleichen (aber nicht regelmaessig verteilten) Nanoclustern aus dieser Au-W Legierung. Diese Oberflaechenlegierung bildet ein neuartiges sp-Band in der Naehe der Fermi-Kante. Zudem spaltet dieser neue elektronische Zustand in konstante Energieniveaus auf. Das beobachtete Phaenomen wird als laterale Quantisierung interpretiert. Das letzte Kapitel dieser Doktorarbeit bildet auch den Hauptteil. Es handelt von Selbstorganisierungsphaenomenen auf einer Oberflaechenrekonstruktion und den Eigenschaften von so hergestellten Nanostrukturen. Das zweidimensionale Oberflaechen-Karbid W(110)/C-R(15x3) wurde intensiv untersucht. Beobachtete Quantentrogeffekte in der Photoemission in Kombination mit den Ergebnissen der Rastertunnelmikroskopuntersuchungen fuehren zu einem verbesserten Strukturmodell fuer das Oberflaechenkarbid. Es wurde auch gezeigt, dass W(110)/C-R(15x3) die Selbstorganisierung von Nanostrukturen mit sehr verschiedenen elektronischen und strukturellen Eigenschaften steuern kann. Es wurde gefunden, dass bei erhoehter Temperatur die R(15x3)-Ueberstruktur die Bildung von Nanostreifen aus unter-monolagiger Au Bedeckung, von denen jede 1 nm breit ist, kontrolliert. Die hergestellten Nanostreifen besitzen eine charakteristische eindimensionale elektronische Struktur mit lateral quantisierten d-Baendern. Basierend auf der Photoemission von Rumpfniveaus wird eine Kohlenstoff-induzierte Oberflaechenlegierung zwischen Au und W als Grund fuer die beobachtete Organisierung vorgeschlagen. Solche Phaenomene sind sehr wichtig fuer Anwendungen, seit die Mikroelektronik in den nm-Massstab eingetreten ist, in welchem mit Quantentrogeffekten zu rechnen ist. Zusaetzlich wurde die Bildung von perfekt uniformen molekularen Nanoclustern von C60 auf W(110)/C-R(15x3) demonstriert. Dieses Phaenomen kann im van-der-Waals Formalismus beschrieben werden. Die berichteten Ergebnisse sind eine erstmalige experimentelle Beobachtung von zweidimensionalen Fulleren-Nanoclustern mit "magischen Zahlen". Berechnungen der Clusterpotentiale in der statischen Naeherung im Girifalco-Modell zeigen Minima der Wechselwirkungsenergie fuer Cluster aus 4 und 7 C60-Molekuelen. Diese "magischen Zahlen" sowie die entsprechenden Clusterkonfigurationen sind vollkommen konsistent mit den Ergebnissen des STM-Experiments. KW - Nanostruktur KW - Selbstorganisation KW - Quantenwell KW - Quantendraht KW - Elektronische Eigenschaft KW - Oberflächenphysik KW - Eindimensionaler Festkörper KW - 1D KW - 2D KW - reduzierte Dimensionalität KW - elektronische Struktur KW - gestufte Oberfläche KW - Elektronen KW - 1D KW - 2D KW - reduced dimensionality KW - electronic structure KW - stepped surface Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-5784 ER - TY - THES A1 - Rader, Oliver T1 - Electron quantization and localization in metal films and nanostructures N2 - Es ist seit einigen Jahren bekannt, dass Elektronen unter bestimmten Bedingungen in dünne Filme eingeschlossen werden können, selbst wenn diese Filme aus Metall bestehen und auf Metall-Substrat aufgebracht werden. In Photoelektronenspektren zeigen diese Filme charakteristische diskrete Energieniveaus, und es hat sich herausgestellt, dass sie zu großen, technisch nutzbaren Effekten führen können, wie der oszillatorischen magnetischen Kopplung in modernen Festplatten-Leseköpfen. In dieser Arbeit wird untersucht, inwieweit die der Quantisierung in zweidimensionalen Filmen zu Grunde liegenden Konzepte auf niedrigere Dimensionalität übertragbar sind. Das bedeutet, dass schrittweise von zweidimensionalen Filmen auf eindimensionale Nanostrukturen übergegangen wird. Diese Nanostrukturen sind zum einen die Terrassen auf atomar gestuften Oberflächen, aber auch Atomketten, die auf diese Terrassen aufgebracht werden, bis hin zu einer vollständigen Bedeckung mit atomar dünnen Nanostreifen. Daneben werden Selbstorganisationseffekte ausgenutzt, um zu perfekt eindimensionalen Atomanordnungen auf Oberflächen zu gelangen. Die winkelaufgelöste Photoemission ist als Untersuchungsmethode deshalb so geeignet, weil sie das Verhalten der Elektronen in diesen Nanostrukturen in Abhängigkeit von der Raumrichtung zeigt, und unterscheidet sich darin beispielsweise von der Rastertunnelmikroskopie. Damit ist es möglich, deutliche und manchmal überraschend große Effekte der eindimensionalen Quantisierung bei verschiedenen exemplarischen Systemen zum Teil erstmals nachzuweisen. Die für zweidimensionale Filme wesentliche Rolle von Bandlücken im Substrat wird für Nanostrukturen bestätigt. Hinzu kommt jedoch eine bei zweidimensionalen Filmen nicht vorhandene Ambivalenz zwischen räumlicher Einschränkung der Elektronen in den Nanostrukturen und dem Effekt eines Übergitters aus Nanostrukturen sowie zwischen Effekten des Elektronenverhaltens in der Probe und solchen des Messprozesses. Letztere sind sehr groß und können die Photoemissionsspektren dominieren. Abschließend wird der Effekt der verminderten Dimensionalität speziell für die d-Elektronen von Mangan untersucht, die zusätzlich starken Wechselwirkungseffekten unterliegen. Auch hierbei treten überraschende Ergebnisse zu Tage. N2 - It has been known for several years that under certain conditions electrons can be confined within thin layers even if these layers consist of metal and are supported by a metal substrate. In photoelectron spectra, these layers show characteristic discrete energy levels and it has turned out that these lead to large effects like the oscillatory magnetic coupling technically exploited in modern hard disk reading heads. The current work asks in how far the concepts underlying quantization in two-dimensional films can be transferred to lower dimensionality. This problem is approached by a stepwise transition from two-dimensional layers to one-dimensional nanostructures. On the one hand, these nanostructures are represented by terraces on atomically stepped surfaces, on the other hand by atom chains which are deposited onto these terraces up to complete coverage by atomically thin nanostripes. Furthermore, self organization effects are used in order to arrive at perfectly one-dimensional atomic arrangements at surfaces. Angle-resolved photoemission is particularly suited as method of investigation because is reveals the behavior of the electrons in these nanostructures in dependence of the spacial direction which distinguishes it from, e. g., scanning tunneling microscopy. With this method intense and at times surprisingly large effects of one-dimensional quantization are observed for various exemplary systems, partly for the first time. The essential role of bandgaps in the substrate known from two-dimensional systems is confirmed for nanostructures. In addition, we reveal an ambiguity without precedent in two-dimensional layers between spacial confinement of electrons on the one side and superlattice effects on the other side as well as between effects caused by the sample and by the measurement process. The latter effects are huge and can dominate the photoelectron spectra. Finally, the effects of reduced dimensionality are studied in particular for the d electrons of manganese which are additionally affected by strong correlation effects. Surprising results are also obtained here. ---------------------------- Die Links zur jeweiligen Source der im Appendix beigefügten Veröffentlichungen befinden sich auf Seite 83 des Volltextes. T2 - Electron quantization and localization in metal films and nanostructures KW - elektronische Struktur KW - elektronische Eigenschaften KW - Dispersion KW - reduzierte Dimensionalität KW - Oberfläche KW - Nanostruktur KW - Quantendraht KW - Terrasse ... KW - electronic structure KW - electronic properties KW - dispersion KW - reduced dimensionality KW - 1D KW - 2D KW - surface KW - nanostructure KW - quantum wire KW - terrace ... Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-0001912 ER -