TY - GEN A1 - Miklashevsky, Alex A1 - Fischer, Martin H. A1 - Lindemann, Oliver T1 - Spatial-numerical associations without a motor response? Grip force says ‘Yes’ T2 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe N2 - In numerical processing, the functional role of Spatial-Numerical Associations (SNAs, such as the association of smaller numbers with left space and larger numbers with right space, the Mental Number Line hypothesis) is debated. Most studies demonstrate SNAs with lateralized responses, and there is little evidence that SNAs appear when no response is required. We recorded passive holding grip forces in no-go trials during number processing. In Experiment 1, participants performed a surface numerical decision task (“Is it a number or a letter?”). In Experiment 2, we used a deeper semantic task (“Is this number larger or smaller than five?”). Despite instruction to keep their grip force constant, participants' spontaneous grip force changed in both experiments: Smaller numbers led to larger force increase in the left than in the right hand in the numerical decision task (500–700 ms after stimulus onset). In the semantic task, smaller numbers again led to larger force increase in the left hand, and larger numbers increased the right-hand holding force. This effect appeared earlier (180 ms) and lasted longer (until 580 ms after stimulus onset). This is the first demonstration of SNAs with passive holding force. Our result suggests that (1) explicit motor response is not a prerequisite for SNAs to appear, and (2) the timing and strength of SNAs are task-dependent. (216 words). T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 810 KW - SNARC KW - Mental number line KW - Number processing KW - Embodied cognition KW - Grip force KW - Motor system Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-578324 SN - 1866-8364 IS - 810 ER - TY - JOUR A1 - Miklashevsky, Alex A1 - Fischer, Martin H. A1 - Lindemann, Oliver T1 - Spatial-numerical associations without a motor response? Grip force says ‘Yes’ JF - Acta Psychologica N2 - In numerical processing, the functional role of Spatial-Numerical Associations (SNAs, such as the association of smaller numbers with left space and larger numbers with right space, the Mental Number Line hypothesis) is debated. Most studies demonstrate SNAs with lateralized responses, and there is little evidence that SNAs appear when no response is required. We recorded passive holding grip forces in no-go trials during number processing. In Experiment 1, participants performed a surface numerical decision task (“Is it a number or a letter?”). In Experiment 2, we used a deeper semantic task (“Is this number larger or smaller than five?”). Despite instruction to keep their grip force constant, participants' spontaneous grip force changed in both experiments: Smaller numbers led to larger force increase in the left than in the right hand in the numerical decision task (500–700 ms after stimulus onset). In the semantic task, smaller numbers again led to larger force increase in the left hand, and larger numbers increased the right-hand holding force. This effect appeared earlier (180 ms) and lasted longer (until 580 ms after stimulus onset). This is the first demonstration of SNAs with passive holding force. Our result suggests that (1) explicit motor response is not a prerequisite for SNAs to appear, and (2) the timing and strength of SNAs are task-dependent. (216 words). KW - SNARC KW - Mental number line KW - Number processing KW - Embodied cognition KW - Grip force KW - Motor system Y1 - 2022 U6 - https://doi.org/10.1016/j.actpsy.2022.103791 SN - 1873-6297 VL - 231 SP - 1 EP - 17 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Pinhas, Michal A1 - Shaki, Samuel A1 - Fischer, Martin H. T1 - Addition goes where the big numbers are: evidence for a reversed operational momentum effect JF - Psychonomic bulletin & review : a journal of the Psychonomic Society N2 - Number processing evokes spatial biases, both when dealing with single digits and in more complex mental calculations. Here we investigated whether these two biases have a common origin, by examining their flexibility. Participants pointed to the locations of arithmetic results on a visually presented line with an inverted, right-to-left number arrangement. We found directionally opposite spatial biases for mental arithmetic and for a parity task administered both before and after the arithmetic task. We discuss implications of this dissociation in our results for the task-dependent cognitive representation of numbers. KW - Mental arithmetic KW - Mental number line KW - Operational momentum KW - Pointing KW - SNARC Y1 - 2015 U6 - https://doi.org/10.3758/s13423-014-0786-z SN - 1069-9384 SN - 1531-5320 VL - 22 IS - 4 SP - 993 EP - 1000 PB - Springer CY - New York ER - TY - JOUR A1 - Hartmann, Matthias A1 - Martarelli, Corinna S. A1 - Mast, Fred W. A1 - Stocker, Kurt T1 - Eye movements during mental time travel follow a diagonal line JF - Consciousness and cognition N2 - Recent research showed that past events are associated with the back and left side, whereas future events are associated with the front and right side of space. These spatial-temporal associations have an impact on our sensorimotor system: thinking about one's past and future leads to subtle body sways in the sagittal dimension of space (Miles, Nind, & Macrae, 2010). In this study we investigated whether mental time travel leads to sensorimotor correlates in the horizontal dimension of space. Participants were asked to mentally displace themselves into the past or future while measuring their spontaneous eye movements on a blank screen. Eye gaze was directed more rightward and upward when thinking about the future than when thinking about the past. Our results provide further insight into the spatial nature of temporal thoughts, and show that not only body, but also eye movements follow a (diagonal) "time line" during mental time travel. (C) 2014 Elsevier Inc. All rights reserved. KW - Mental time travel KW - Eye movements KW - Mental time line KW - Spatial-temporal association KW - Future KW - Past KW - Embodied cognition KW - Metaphors KW - Mental number line Y1 - 2014 U6 - https://doi.org/10.1016/j.concog.2014.09.007 SN - 1053-8100 SN - 1090-2376 VL - 30 SP - 201 EP - 209 PB - Elsevier CY - San Diego ER -