TY - GEN A1 - Paape, Dario L. J. F. T1 - Filling the Silence BT - Reactivation, not Reconstruction N2 - In a self-paced reading experiment, we investigated the processing of sluicing constructions (“sluices”) whose antecedent contained a known garden-path structure in German. Results showed decreased processing times for sluices with garden-path antecedents as well as a disadvantage for antecedents with non-canonical word order downstream from the ellipsis site. A post-hoc analysis showed the garden-path advantage also to be present in the region right before the ellipsis site. While no existing account of ellipsis processing explicitly predicted the results, we argue that they are best captured by combining a local antecedent mismatch effect with memory trace reactivation through reanalysis. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 285 KW - ellipsis processing KW - garden-path effect KW - German KW - retrieval KW - reconstruction KW - self-paced reading Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-90480 ER - TY - GEN A1 - Larhlimi, Abdelhalim A1 - David, Laszlo A1 - Selbig, Joachim A1 - Bockmayr, Alexander T1 - F2C2 BT - a fast tool for the computation of flux coupling in genome-scale metabolic networks T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Background: Flux coupling analysis (FCA) has become a useful tool in the constraint-based analysis of genome-scale metabolic networks. FCA allows detecting dependencies between reaction fluxes of metabolic networks at steady-state. On the one hand, this can help in the curation of reconstructed metabolic networks by verifying whether the coupling between reactions is in agreement with the experimental findings. On the other hand, FCA can aid in defining intervention strategies to knock out target reactions. Results: We present a new method F2C2 for FCA, which is orders of magnitude faster than previous approaches. As a consequence, FCA of genome-scale metabolic networks can now be performed in a routine manner. Conclusions: We propose F2C2 as a fast tool for the computation of flux coupling in genome-scale metabolic networks. F2C2 is freely available for non-commercial use at https://sourceforge.net/projects/f2c2/files/. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 921 KW - balance analysis KW - reconstruction KW - pathways KW - models KW - metabolic network KW - couple reaction KW - reversible reaction KW - linear programming problem KW - coupling relationship Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-432431 SN - 1866-8372 IS - 921 ER -