TY - JOUR A1 - Le Corre, Vincent M. A1 - Stolterfoht, Martin A1 - Perdigon Toro, Lorena A1 - Feuerstein, Markus A1 - Wolff, Christian Michael A1 - Gil-Escrig, Lidon A1 - Bolink, Henk J. A1 - Neher, Dieter A1 - Koster, L. Jan Anton T1 - Charge Transport Layers Limiting the Efficiency of Perovskite Solar Cells: How To Optimize Conductivity, Doping, and Thickness JF - ACS Applied Energy Materials N2 - Perovskite solar cells (PSCs) are one of the main research topics of the photovoltaic community; with efficiencies now reaching up to 24%, PSCs are on the way to catching up with classical inorganic solar cells. However, PSCs have not yet reached their full potential. In fact, their efficiency is still limited by nonradiative recombination, mainly via trap-states and by losses due to the poor transport properties of the commonly used transport layers (TLs). Indeed, state-of-the-art TLs (especially if organic) suffer from rather low mobilities, typically within 10(-5) and 10(-2) cm(-2) V-1 s(-1), when compared to the high mobilities, 1-10 cm(-2) V-1 s(-1), measured for perovskites. This work presents a comprehensive analysis of the effect of the mobility, thickness, and doping density of the transport layers based on combined experimental and modeling results of two sets of devices made of a solution-processed high-performing triple-cation (PCE approximate to 20%). The results are also cross-checked on vacuum-processed MAPbI(3) devices. From this analysis, general guidelines on how to optimize a TL are introduced and especially a new and simple formula to easily calculate the amount of doping necessary to counterbalance the low mobility of the TLs. KW - perovskite solar cells KW - transport layers KW - conductivity KW - doping KW - charge transport Y1 - 2019 U6 - https://doi.org/10.1021/acsaem.9b00856 SN - 2574-0962 VL - 2 IS - 9 SP - 6280 EP - 6287 PB - American Chemical Society CY - Washington ER -