TY - THES A1 - Vacogne, Charlotte D. T1 - New synthetic routes towards well-defined polypeptides, morphologies and hydrogels T1 - Neue Syntheserouten zu wohldefinierten Polypeptiden, Morphologien und Hydrogelen N2 - Proteins are natural polypeptides produced by cells; they can be found in both animals and plants, and possess a variety of functions. One of these functions is to provide structural support to the surrounding cells and tissues. For example, collagen (which is found in skin, cartilage, tendons and bones) and keratin (which is found in hair and nails) are structural proteins. When a tissue is damaged, however, the supporting matrix formed by structural proteins cannot always spontaneously regenerate. Tailor-made synthetic polypeptides can be used to help heal and restore tissue formation. Synthetic polypeptides are typically synthesized by the so-called ring opening polymerization (ROP) of α-amino acid N-carboxyanhydrides (NCA). Such synthetic polypeptides are generally non-sequence-controlled and thus less complex than proteins. As such, synthetic polypeptides are rarely as efficient as proteins in their ability to self-assemble and form hierarchical or structural supramolecular assemblies in water, and thus, often require rational designing. In this doctoral work, two types of amino acids, γ-benzyl-L/D-glutamate (BLG / BDG) and allylglycine (AG), were selected to synthesize a series of (co)polypeptides of different compositions and molar masses. A new and versatile synthetic route to prepare polypeptides was developed, and its mechanism and kinetics were investigated. The polypeptide properties were thoroughly studied and new materials were developed from them. In particular, these polypeptides were able to aggregate (or self-assemble) in solution into microscopic fibres, very similar to those formed by collagen. By doing so, they formed robust physical networks and organogels which could be processed into high water-content, pH-responsive hydrogels. Particles with highly regular and chiral spiral morphologies were also obtained by emulsifying these polypeptides. Such polypeptides and the materials derived from them are, therefore, promising candidates for biomedical applications. N2 - Proteine, auch Polypeptide genannt, sind große Biomoleküle, die aus kleineren Aminosäuren bestehen. Diese sind zu langen Ketten miteinander verbunden, wie die Perlen auf einer Perlenkette. Sie werden in Zellen produziert, können in Tieren und Pflanzen gefunden werden und haben vielfältige Funktionen. Eine dieser Funktionen ist es, die umgebenen Zellen und Gewebe wie ein Gerüst zu stützen. Kollagen (welches in Haut, Knorpel, Sehnen und Knochen zu finden ist) und Keratin (welches in Haaren und Nägeln vorkommt) gehören zu diesen Strukturproteinen. Jedoch wenn ein Gewebe beschädigt ist, beispielsweise als Folge eines Unfalls, kann sich das Grundgerüst aus diesen Strukturproteinen manchmal nicht mehr selbst regenerieren. Maßgefertigte synthetische Polypeptide, können dafür verwendet werden, die Heilung und Wiederherstellung des Gewebes zu Unterstützen. Diese Polypeptide werden mit einer Reihe an chemischen Reaktionen synthetisiert, welche hauptsächlich darauf abzielen Aminosäuren miteinander zu verknüpfen. Synthetische Polypeptide sind weniger Komplex als die von Zellen hergestellten, natürlichen Polypeptide (Proteine). Während in den natürlichen Polypeptiden die Aminosäuren in einer von der DNA definierten Reihenfolge, welche als Sequenz bezeichnet wird, angeordnet sind, sind sie in synthetischen Polypeptiden zumeist zufällig verteilt. Die Konsequenz daraus ist, dass synthetische Polypeptide nicht immer so Leistungsfähig sind wie natürliche Proteine und ein durchdachtes Design benötigen. Zwei Aminosäuren wurden in dieser Dissertation sorgfältig ausgewählt und verwendet um eine Serie an Polypeptiden mit unterschiedlicher Zusammensetzung und Länge zu synthetisieren. Ein neuer und vielseitiger Syntheseweg wurde ebenfalls entwickelt und der zugrundeliegende Mechanismus untersucht. Die Polypeptide wurden gründlich analysiert und neue Materialien wurden aus ihnen entwickelt. In Lösung gebracht formten diese Fasern, ähnlich denen von Kollagen, welche sich wiederum zu robusten Netzwerken anordneten. Aus diesen Netzwerken ließen sich Hydrogele herstellen, welche in der Lage waren große Mengen an Wasser aufzunehmen. Diese Hydrogele wiederum stellen vielversprechende Kandidaten für biomedizinische Anwendungen dar. KW - polymer KW - chemistry KW - biomaterial KW - polymerization KW - kinetics KW - polypeptide KW - colloid KW - gelation KW - hydrogel KW - organogel KW - secondary structure KW - physical KW - NCA KW - N-carboxyanhydride KW - Polymer KW - Chemie KW - Biomaterial KW - Polymerisation KW - Kinetik KW - Polypeptid KW - Kolloid KW - Gelieren KW - Hydrogel KW - Organogel KW - Sekundärstruktur KW - physikalisch KW - NCA KW - N-carboxyanhydrid Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-396366 ER - TY - THES A1 - Meyer, Matthias T1 - PIPOX-PEP : kontrollierte Synthese und Aggregationsverhalten von Blockcopolymeren mit schaltbarer Hydrophilie T1 - PIPOX-PEP : controlled synthesis and aggregation behaviour of blockcopolymers with switchable hydrophilicity N2 - Es wurden Poly(2-isopropyl-2-oxazolin)-Makroinitiatoren mit terminaler Ammoniumtrifluoracetat-Endgruppe synthetisiert, die anschließend für die Ammonium vermittelte NCA Polymerisation in NMP eingesetzt wurden. Die hierbei synthetisierten Poly(2-isopropyl-2-oxazolin)-block-poly(L-glutamat) (PIPOX-PEP) Blockcopolymere hatten eine Molekulargewichtsverteilung von 1,2 (UZ). Es wurde beobachtet, dass Poly(2-isopropyl-2-oxazolin) bei langen Zeiten oberhalb der LCST irreversibel sphärische Strukturen bildet, die eine hierarchische Struktur besitzen und bei denen es sich möglicherweise um "large compound micelles" handelt. PIPOX-PEP kann in wässeriger Lösung bei langen Zeiten oberhalb der LCST "cottonball" Strukturen bilden. Die Aggregate wurden mittels Lichtstreuung, NMR und TEM charakterisiert. Im Rahmen der Arbeit wurden Strukturbildungsmodelle entwickelt. N2 - A convenient procedure for the synthesis of well-defined poly(2-isopropyl-2-oxazoline)-block-poly(L-glutamate) (PIPOX-PEP) through combined cationic/anionic ring-opening polymerization is described. The key step is the preparation of an ω-(ammonium trifluoroacetate)-poly(2-isopropyl-2-oxazoline), which is used as a macroinitiator for the “ammonium-mediated” polymerization of γ-benzyl L-glutamate N-carboxyanhydride (NCA). PIPOX is a thermoresponsive polymer exhibiting a lower critical solution temperature (LCST) near human body temperature, while PEP responds to changes in pH (helix-to-coil transition). The phase behavior of aqueous PIPOX and PIPOX-PEP solutions has been characterized by means of light scattering, NMR spectroscopy, and transmission electron microscopy (TEM). Phase transition is usually reversible, but renders irreversible when solution are annealed for longer times at 65 °C, far above the LCST. Coagulate particles with hierarchical ordering in the range of nanometers to micrometers, considered as “large compound micelles” or “cottonballs”, are then produced. A tentative mechanism for the formation of such particles is described. KW - Polymer KW - Polyoxazolin KW - Polypeptid KW - Aggregate KW - polyoxazoline KW - polypeptide KW - aggregate Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-10832 ER -