TY - THES A1 - Buschmann, Stefan T1 - A software framework for GPU-based geo-temporal visualization techniques T1 - Ein Software-Framework für GPU-basierte räumlich-zeitliche Visualisierungstechniken N2 - Räumlich-zeitliche Daten sind Daten, welche sowohl einen Raum- als auch einen Zeitbezug aufweisen. So können beispielsweise Zeitreihen von Geodaten, thematische Karten die sich über die Zeit verändern, oder Bewegungsaufzeichnungen von sich bewegenden Objekten als räumlich-zeitliche Daten aufgefasst werden. In der heutigen automatisierten Welt gibt es eine wachsende Anzahl von Datenquellen, die beständig räumlich-zeitliche Daten generieren. Hierzu gehören beispielsweise Verkehrsüberwachungssysteme, die Bewegungsdaten von Menschen oder Fahrzeugen aufzeichnen, Fernerkundungssysteme, welche regelmäßig unsere Umgebung scannen und digitale Abbilder wie z.B. Stadt- und Landschaftsmodelle erzeugen, sowie Sensornetzwerke in unterschiedlichsten Anwendungsgebieten, wie z.B. der Logistik, der Verhaltensforschung von Tieren, oder der Klimaforschung. Zur Analyse räumlich-zeitlicher Daten werden neben der automatischen Analyse mittels statistischer Methoden und Data-Mining auch explorative Methoden angewendet, welche auf der interaktiven Visualisierung der Daten beruhen. Diese Methode der Analyse basiert darauf, dass Anwender in Form interaktiver Visualisierung die Daten explorieren können, wodurch die menschliche Wahrnehmung sowie das Wissen der User genutzt werden, um Muster zu erkennen und dadurch einen Einblick in die Daten zu erlangen. Diese Arbeit beschreibt ein Software-Framework für die Visualisierung räumlich-zeitlicher Daten, welches GPU-basierte Techniken beinhaltet, um eine interaktive Visualisierung und Exploration großer räumlich-zeitlicher Datensätze zu ermöglichen. Die entwickelten Techniken umfassen Datenhaltung, Prozessierung und Rendering und ermöglichen es, große Datenmengen in Echtzeit zu prozessieren und zu visualisieren. Die Hauptbeiträge der Arbeit umfassen: - Konzept und Implementierung einer GPU-zentrierten Visualisierungspipeline. Die beschriebenen Techniken basieren auf dem Konzept einer GPU-zentrierten Visualisierungspipeline, in welcher alle Stufen -- Prozessierung,Mapping, Rendering -- auf der GPU ausgeführt werden. Bei diesem Konzept werden die räumlich-zeitlichen Daten direkt im GPU-Speicher abgelegt. Während des Rendering-Prozesses werden dann mittels Shader-Programmen die Daten prozessiert, gefiltert, ein Mapping auf visuelle Attribute vorgenommen, und schließlich die Geometrien für die Visualisierung erzeugt. Datenprozessierung, Filtering und Mapping können daher in Echtzeit ausgeführt werden. Dies ermöglicht es Usern, die Mapping-Parameter sowie den gesamten Visualisierungsprozess interaktiv zu steuern und zu kontrollieren. - Interaktive Visualisierung attributierter 3D-Trajektorien. Es wurde eine Visualisierungsmethode für die interaktive Exploration einer großen Anzahl von 3D Bewegungstrajektorien entwickelt. Die Trajektorien werden dabei innerhalb einer virtuellen geographischen Umgebung in Form von einfachen Geometrien, wie Linien, Bändern, Kugeln oder Röhren dargestellt. Durch interaktives Mapping können Attributwerte der Trajektorien oder einzelner Messpunkte auf visuelle Eigenschaften abgebildet werden. Hierzu stehen Form, Höhe, Größe, Farbe, Textur, sowie Animation zur Verfügung. Mithilfe dieses dynamischen Mappings wurden außerdem verschiedene Visualisierungsmethoden implementiert, wie z.B. eine Focus+Context-Visualisierung von Trajektorien mithilfe von interaktiven Dichtekarten, sowie einer Space-Time-Cube-Visualisierung zur Darstellung des zeitlichen Ablaufs einzelner Bewegungen. - Interaktive Visualisierung geographischer Netzwerke. Es wurde eine Visualisierungsmethode zur interaktiven Exploration geo-referenzierter Netzwerke entwickelt, welche die Visualisierung von Netzwerken mit einer großen Anzahl von Knoten und Kanten ermöglicht. Um die Analyse von Netzwerken verschiedener Größen und in unterschiedlichen Kontexten zu ermöglichen, stehen mehrere virtuelle geographische Umgebungen zur Verfügung, wie bspw. ein virtueller 3D-Globus, als auch 2D-Karten mit unterschiedlichen geographischen Projektionen. Zur interaktiven Analyse dieser Netzwerke stehen interaktive Tools wie Filterung, Mapping und Selektion zur Verfügung. Des weiteren wurden Visualisierungsmethoden für verschiedene Arten von Netzwerken, wie z.B. 3D-Netzwerke und zeitlich veränderliche Netzwerke, implementiert. Zur Demonstration des Konzeptes wurden interaktive Tools für zwei unterschiedliche Anwendungsfälle entwickelt. Das erste beinhaltet die Visualisierung attributierter 3D-Trajektorien, welche die Bewegungen von Flugzeugen um einen Flughafen beschreiben. Es ermöglicht Nutzern, die Trajektorien von ankommenden und startenden Flugzeugen über den Zeitraum eines Monats interaktiv zu explorieren und zu analysieren. Durch Verwendung der interaktiven Visualisierungsmethoden für 3D-Trajektorien und interaktiven Dichtekarten können Einblicke in die Daten gewonnen werden, wie beispielsweise häufig genutzte Flugkorridore, typische sowie untypische Bewegungsmuster, oder ungewöhnliche Vorkommnisse wie Fehlanflüge. Der zweite Anwendungsfall beinhaltet die Visualisierung von Klimanetzwerken, welche geographischen Netzwerken in der Klimaforschung darstellen. Klimanetzwerke repräsentieren die Dynamiken im Klimasystem durch eine Netzwerkstruktur, die die statistische Beziehungen zwischen Orten beschreiben. Das entwickelte Tool ermöglicht es Analysten, diese großen Netzwerke interaktiv zu explorieren und dadurch die Struktur des Netzwerks zu analysieren und mit den geographischen Daten in Beziehung zu setzen. Interaktive Filterung und Selektion ermöglichen es, Muster in den Daten zu identifizieren, und so bspw. Cluster in der Netzwerkstruktur oder Strömungsmuster zu erkennen. N2 - Spatio-temporal data denotes a category of data that contains spatial as well as temporal components. For example, time-series of geo-data, thematic maps that change over time, or tracking data of moving entities can be interpreted as spatio-temporal data. In today's automated world, an increasing number of data sources exist, which constantly generate spatio-temporal data. This includes for example traffic surveillance systems, which gather movement data about human or vehicle movements, remote-sensing systems, which frequently scan our surroundings and produce digital representations of cities and landscapes, as well as sensor networks in different domains, such as logistics, animal behavior study, or climate research. For the analysis of spatio-temporal data, in addition to automatic statistical and data mining methods, exploratory analysis methods are employed, which are based on interactive visualization. These analysis methods let users explore a data set by interactively manipulating a visualization, thereby employing the human cognitive system and knowledge of the users to find patterns and gain insight into the data. This thesis describes a software framework for the visualization of spatio-temporal data, which consists of GPU-based techniques to enable the interactive visualization and exploration of large spatio-temporal data sets. The developed techniques include data management, processing, and rendering, facilitating real-time processing and visualization of large geo-temporal data sets. It includes three main contributions: - Concept and Implementation of a GPU-Based Visualization Pipeline. The developed visualization methods are based on the concept of a GPU-based visualization pipeline, in which all steps -- processing, mapping, and rendering -- are implemented on the GPU. With this concept, spatio-temporal data is represented directly in GPU memory, using shader programs to process and filter the data, apply mappings to visual properties, and finally generate the geometric representations for a visualization during the rendering process. Data processing, filtering, and mapping are thereby executed in real-time, enabling dynamic control over the mapping and a visualization process which can be controlled interactively by a user. - Attributed 3D Trajectory Visualization. A visualization method has been developed for the interactive exploration of large numbers of 3D movement trajectories. The trajectories are visualized in a virtual geographic environment, supporting basic geometries such as lines, ribbons, spheres, or tubes. Interactive mapping can be applied to visualize the values of per-node or per-trajectory attributes, supporting shape, height, size, color, texturing, and animation as visual properties. Using the dynamic mapping system, several kind of visualization methods have been implemented, such as focus+context visualization of trajectories using interactive density maps, and space-time cube visualization to focus on the temporal aspects of individual movements. - Geographic Network Visualization. A method for the interactive exploration of geo-referenced networks has been developed, which enables the visualization of large numbers of nodes and edges in a geographic context. Several geographic environments are supported, such as a 3D globe, as well as 2D maps using different map projections, to enable the analysis of networks in different contexts and scales. Interactive filtering, mapping, and selection can be applied to analyze these geographic networks, and visualization methods for specific types of networks, such as coupled 3D networks or temporal networks have been implemented. As a demonstration of the developed visualization concepts, interactive visualization tools for two distinct use cases have been developed. The first contains the visualization of attributed 3D movement trajectories of airplanes around an airport. It allows users to explore and analyze the trajectories of approaching and departing aircrafts, which have been recorded over the period of a month. By applying the interactive visualization methods for trajectory visualization and interactive density maps, analysts can derive insight from the data, such as common flight paths, regular and irregular patterns, or uncommon incidents such as missed approaches on the airport. The second use case involves the visualization of climate networks, which are geographic networks in the climate research domain. They represent the dynamics of the climate system using a network structure that expresses statistical interrelationships between different regions. The interactive tool allows climate analysts to explore these large networks, analyzing the network's structure and relating it to the geographic background. Interactive filtering and selection enables them to find patterns in the climate data and identify e.g. clusters in the networks or flow patterns. KW - computer graphics KW - visualization KW - visual analytics KW - Computergrafik KW - Visualisierung KW - Visual Analytics Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-443406 ER - TY - THES A1 - Lorenz, Haik T1 - Texturierung und Visualisierung virtueller 3D-Stadtmodelle T1 - Texturing and Visualization of Virtual 3D City Models N2 - Im Mittelpunkt dieser Arbeit stehen virtuelle 3D-Stadtmodelle, die Objekte, Phänomene und Prozesse in urbanen Räumen in digitaler Form repräsentieren. Sie haben sich zu einem Kernthema von Geoinformationssystemen entwickelt und bilden einen zentralen Bestandteil geovirtueller 3D-Welten. Virtuelle 3D-Stadtmodelle finden nicht nur Verwendung als Mittel für Experten in Bereichen wie Stadtplanung, Funknetzplanung, oder Lärmanalyse, sondern auch für allgemeine Nutzer, die realitätsnah dargestellte virtuelle Städte in Bereichen wie Bürgerbeteiligung, Tourismus oder Unterhaltung nutzen und z. B. in Anwendungen wie GoogleEarth eine räumliche Umgebung intuitiv erkunden und durch eigene 3D-Modelle oder zusätzliche Informationen erweitern. Die Erzeugung und Darstellung virtueller 3D-Stadtmodelle besteht aus einer Vielzahl von Prozessschritten, von denen in der vorliegenden Arbeit zwei näher betrachtet werden: Texturierung und Visualisierung. Im Bereich der Texturierung werden Konzepte und Verfahren zur automatischen Ableitung von Fototexturen aus georeferenzierten Schrägluftbildern sowie zur Speicherung oberflächengebundener Daten in virtuellen 3D-Stadtmodellen entwickelt. Im Bereich der Visualisierung werden Konzepte und Verfahren für die multiperspektivische Darstellung sowie für die hochqualitative Darstellung nichtlinearer Projektionen virtueller 3D-Stadtmodelle in interaktiven Systemen vorgestellt. Die automatische Ableitung von Fototexturen aus georeferenzierten Schrägluftbildern ermöglicht die Veredelung vorliegender virtueller 3D-Stadtmodelle. Schrägluftbilder bieten sich zur Texturierung an, da sie einen Großteil der Oberflächen einer Stadt, insbesondere Gebäudefassaden, mit hoher Redundanz erfassen. Das Verfahren extrahiert aus dem verfügbaren Bildmaterial alle Ansichten einer Oberfläche und fügt diese pixelpräzise zu einer Textur zusammen. Durch Anwendung auf alle Oberflächen wird das virtuelle 3D-Stadtmodell flächendeckend texturiert. Der beschriebene Ansatz wurde am Beispiel des offiziellen Berliner 3D-Stadtmodells sowie der in GoogleEarth integrierten Innenstadt von München erprobt. Die Speicherung oberflächengebundener Daten, zu denen auch Texturen zählen, wurde im Kontext von CityGML, einem international standardisierten Datenmodell und Austauschformat für virtuelle 3D-Stadtmodelle, untersucht. Es wird ein Datenmodell auf Basis computergrafischer Konzepte entworfen und in den CityGML-Standard integriert. Dieses Datenmodell richtet sich dabei an praktischen Anwendungsfällen aus und lässt sich domänenübergreifend verwenden. Die interaktive multiperspektivische Darstellung virtueller 3D-Stadtmodelle ergänzt die gewohnte perspektivische Darstellung nahtlos um eine zweite Perspektive mit dem Ziel, den Informationsgehalt der Darstellung zu erhöhen. Diese Art der Darstellung ist durch die Panoramakarten von H. C. Berann inspiriert; Hauptproblem ist die Übertragung des multiperspektivischen Prinzips auf ein interaktives System. Die Arbeit stellt eine technische Umsetzung dieser Darstellung für 3D-Grafikhardware vor und demonstriert die Erweiterung von Vogel- und Fußgängerperspektive. Die hochqualitative Darstellung nichtlinearer Projektionen beschreibt deren Umsetzung auf 3D-Grafikhardware, wobei neben der Bildwiederholrate die Bildqualität das wesentliche Entwicklungskriterium ist. Insbesondere erlauben die beiden vorgestellten Verfahren, dynamische Geometrieverfeinerung und stückweise perspektivische Projektionen, die uneingeschränkte Nutzung aller hardwareseitig verfügbaren, qualitätssteigernden Funktionen wie z.~B. Bildraumgradienten oder anisotroper Texturfilterung. Beide Verfahren sind generisch und unterstützen verschiedene Projektionstypen. Sie ermöglichen die anpassungsfreie Verwendung gängiger computergrafischer Effekte wie Stilisierungsverfahren oder prozeduraler Texturen für nichtlineare Projektionen bei optimaler Bildqualität. Die vorliegende Arbeit beschreibt wesentliche Technologien für die Verarbeitung virtueller 3D-Stadtmodelle: Zum einen lassen sich mit den Ergebnissen der Arbeit Texturen für virtuelle 3D-Stadtmodelle automatisiert herstellen und als eigenständige Attribute in das virtuelle 3D-Stadtmodell einfügen. Somit trägt diese Arbeit dazu bei, die Herstellung und Fortführung texturierter virtueller 3D-Stadtmodelle zu verbessern. Zum anderen zeigt die Arbeit Varianten und technische Lösungen für neuartige Projektionstypen für virtueller 3D-Stadtmodelle in interaktiven Visualisierungen. Solche nichtlinearen Projektionen stellen Schlüsselbausteine dar, um neuartige Benutzungsschnittstellen für und Interaktionsformen mit virtuellen 3D-Stadtmodellen zu ermöglichen, insbesondere für mobile Geräte und immersive Umgebungen. N2 - This thesis concentrates on virtual 3D city models that digitally encode objects, phenomena, and processes in urban environments. Such models have become core elements of geographic information systems and constitute a major component of geovirtual 3D worlds. Expert users make use of virtual 3D city models in various application domains, such as urban planning, radio-network planning, and noise immision simulation. Regular users utilize virtual 3D city models in domains, such as tourism, and entertainment. They intuitively explore photorealistic virtual 3D city models through mainstream applications such as GoogleEarth, which additionally enable users to extend virtual 3D city models by custom 3D models and supplemental information. Creation and rendering of virtual 3D city models comprise a large number of processes, from which texturing and visualization are in the focus of this thesis. In the area of texturing, this thesis presents concepts and techniques for automatic derivation of photo textures from georeferenced oblique aerial imagery and a concept for the integration of surface-bound data into virtual 3D city model datasets. In the area of visualization, this thesis presents concepts and techniques for multiperspective views and for high-quality rendering of nonlinearly projected virtual 3D city models in interactive systems. The automatic derivation of photo textures from georeferenced oblique aerial imagery is a refinement process for a given virtual 3D city model. Our approach uses oblique aerial imagery, since it provides a citywide highly redundant coverage of surfaces, particularly building facades. From this imagery, our approach extracts all views of a given surface and creates a photo texture by selecting the best view on a pixel level. By processing all surfaces, the virtual 3D city model becomes completely textured. This approach has been tested for the official 3D city model of Berlin and the model of the inner city of Munich accessible in GoogleEarth. The integration of surface-bound data, which include textures, into virtual 3D city model datasets has been performed in the context of CityGML, an international standard for the exchange and storage of virtual 3D city models. We derive a data model from a set of use cases and integrate it into the CityGML standard. The data model uses well-known concepts from computer graphics for data representation. Interactive multiperspective views of virtual 3D city models seamlessly supplement a regular perspective view with a second perspective. Such a construction is inspired by panorama maps by H. C. Berann and aims at increasing the amount of information in the image. Key aspect is the construction's use in an interactive system. This thesis presents an approach to create multiperspective views on 3D graphics hardware and exemplifies the extension of bird's eye and pedestrian views. High-quality rendering of nonlinearly projected virtual 3D city models focuses on the implementation of nonlinear projections on 3D graphics hardware. The developed concepts and techniques focus on high image quality. This thesis presents two such concepts, namely dynamic mesh refinement and piecewise perspective projections, which both enable the use of all graphics hardware features, such as screen space gradients and anisotropic texture filtering under nonlinear projections. Both concepts are generic and customizable towards specific projections. They enable the use of common computer graphics effects, such as stylization effects or procedural textures, for nonlinear projections at optimal image quality and interactive frame rates. This thesis comprises essential techniques for virtual 3D city model processing. First, the results of this thesis enable automated creation of textures for and their integration as individual attributes into virtual 3D city models. Hence, this thesis contributes to an improved creation and continuation of textured virtual 3D city models. Furthermore, the results provide novel approaches to and technical solutions for projecting virtual 3D city models in interactive visualizations. Such nonlinear projections are key components of novel user interfaces and interaction techniques for virtual 3D city models, particularly on mobile devices and in immersive environments. KW - Computergrafik KW - virtuelle 3D-Stadtmodelle KW - CityGML KW - nichtlineare Projektionen KW - Texturen KW - computer graphics KW - virtual 3D city models KW - CityGML KW - nonlinear projections KW - textures Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-53879 ER - TY - THES A1 - Buchholz, Henrik T1 - Real-time visualization of 3D city models T1 - Echtzeit-Visualisierung von 3D-Stadtmodellen N2 - An increasing number of applications requires user interfaces that facilitate the handling of large geodata sets. Using virtual 3D city models, complex geospatial information can be communicated visually in an intuitive way. Therefore, real-time visualization of virtual 3D city models represents a key functionality for interactive exploration, presentation, analysis, and manipulation of geospatial data. This thesis concentrates on the development and implementation of concepts and techniques for real-time city model visualization. It discusses rendering algorithms as well as complementary modeling concepts and interaction techniques. Particularly, the work introduces a new real-time rendering technique to handle city models of high complexity concerning texture size and number of textures. Such models are difficult to handle by current technology, primarily due to two problems: - Limited texture memory: The amount of simultaneously usable texture data is limited by the memory of the graphics hardware. - Limited number of textures: Using several thousand different textures simultaneously causes significant performance problems due to texture switch operations during rendering. The multiresolution texture atlases approach, introduced in this thesis, overcomes both problems. During rendering, it permanently maintains a small set of textures that are sufficient for the current view and the screen resolution available. The efficiency of multiresolution texture atlases is evaluated in performance tests. To summarize, the results demonstrate that the following goals have been achieved: - Real-time rendering becomes possible for 3D scenes whose amount of texture data exceeds the main memory capacity. - Overhead due to texture switches is kept permanently low, so that the number of different textures has no significant effect on the rendering frame rate. Furthermore, this thesis introduces two new approaches for real-time city model visualization that use textures as core visualization elements: - An approach for visualization of thematic information. - An approach for illustrative visualization of 3D city models. Both techniques demonstrate that multiresolution texture atlases provide a basic functionality for the development of new applications and systems in the domain of city model visualization. N2 - Eine zunehmende Anzahl von Anwendungen benötigt Benutzungsschnittstellen, um den Umgang mit großen Geodatenmengen zu ermöglichen. Virtuelle 3D-Stadtmodelle bieten eine Möglichkeit, komplexe raumbezogene Informationen auf intuitive Art und Weise visuell erfassbar zu machen. Echtzeit-Visualisierung virtueller Stadtmodelle bildet daher eine Grundlage für die interaktive Exploration, Präsentation, Analyse und Bearbeitung raumbezogener Daten. Diese Arbeit befasst sich mit der Entwicklung und Implementierung von Konzepten und Techniken für die Echtzeit-Visualisierung virtueller 3D-Stadtmodelle. Diese umfassen sowohl Rendering-Algorithmen als auch dazu komplementäre Modellierungskonzepte und Interaktionstechniken. Insbesondere wird in dieser Arbeit eine neue Echtzeit-Rendering-Technik für Stadtmodelle hoher Komplexität hinsichtlich Texturgröße und Texturanzahl vorgestellt. Solche Modelle sind durch die derzeit zur Verfügung stehende Technologie schwierig zu bewältigen, vor allem aus zwei Gründen: - Begrenzter Textur-Speicher: Die Menge an gleichzeitig nutzbaren Texturdaten ist beschränkt durch den Speicher der Grafik-Hardware. - Begrenzte Textur-Anzahl: Die gleichzeitige Verwendung mehrerer tausend Texturen verursacht erhebliche Performance-Probleme aufgrund von Textur-Umschaltungs-Operationen während des Renderings. Das in dieser Arbeit vorgestellte Verfahren, das Rendering mit Multiresolutions-Texturatlanten löst beide Probleme. Während der Darstellung wird dazu permanent eine kleine Textur-Menge verwaltet, die für die aktuelle Sichtperspektive und die zur Verfügung stehende Bildschirmauflösung hinreichend ist. Die Effizienz des Verfahrens wird in Performance-Tests untersucht. Die Ergebnisse zeigen, dass die folgenden Ziele erreicht werden: - Echtzeit-Darstellung wird für Modelle möglich, deren Texturdaten-Menge die Kapazität des Hauptspeichers übersteigt. - Der Overhead durch Textur-Umschaltungs-Operationen wird permanent niedrig gehalten, so dass die Anzahl der unterschiedlichen Texturen keinen wesentlichen Einfluss auf die Bildrate der Darstellung hat. Die Arbeit stellt außerdem zwei neue Ansätze zur 3D-Stadtmodell-Visualisierung vor, in denen Texturen als zentrale Visualisierungselemente eingesetzt werden: - Ein Verfahren zur Visualisierung thematischer Informationen. - Ein Verfahren zur illustrativen Visualisierung von 3D-Stadtmodellen. Beide Ansätze zeigen, dass Rendering mit Multiresolutions-Texturatlanten eine Grundlage für die Entwicklung neuer Anwendungen und Systeme im Bereich der 3D-Stadtmodell-Visualisierung bietet. KW - Computergrafik KW - Geovisualisierung KW - 3D-Stadtmodelle KW - Texturen KW - computer graphics KW - geovisualization KW - 3d city models KW - textures Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-13337 ER -