TY - GEN A1 - Larhlimi, Abdelhalim A1 - David, Laszlo A1 - Selbig, Joachim A1 - Bockmayr, Alexander T1 - F2C2 BT - a fast tool for the computation of flux coupling in genome-scale metabolic networks T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Background: Flux coupling analysis (FCA) has become a useful tool in the constraint-based analysis of genome-scale metabolic networks. FCA allows detecting dependencies between reaction fluxes of metabolic networks at steady-state. On the one hand, this can help in the curation of reconstructed metabolic networks by verifying whether the coupling between reactions is in agreement with the experimental findings. On the other hand, FCA can aid in defining intervention strategies to knock out target reactions. Results: We present a new method F2C2 for FCA, which is orders of magnitude faster than previous approaches. As a consequence, FCA of genome-scale metabolic networks can now be performed in a routine manner. Conclusions: We propose F2C2 as a fast tool for the computation of flux coupling in genome-scale metabolic networks. F2C2 is freely available for non-commercial use at https://sourceforge.net/projects/f2c2/files/. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 921 KW - balance analysis KW - reconstruction KW - pathways KW - models KW - metabolic network KW - couple reaction KW - reversible reaction KW - linear programming problem KW - coupling relationship Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-432431 SN - 1866-8372 IS - 921 ER - TY - GEN A1 - Laudan, Jonas A1 - Rözer, Viktor A1 - Sieg, Tobias A1 - Vogel, Kristin A1 - Thieken, Annegret T1 - Damage assessment in Braunsbach 2016 BT - data collection and analysis for an improved understanding of damaging processes during flash floods T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Flash floods are caused by intense rainfall events and represent an insufficiently understood phenomenon in Germany. As a result of higher precipitation intensities, flash floods might occur more frequently in future. In combination with changing land use patterns and urbanisation, damage mitigation, insurance and risk management in flash-flood-prone regions are becoming increasingly important. However, a better understanding of damage caused by flash floods requires ex post collection of relevant but yet sparsely available information for research. At the end of May 2016, very high and concentrated rainfall intensities led to severe flash floods in several southern German municipalities. The small town of Braunsbach stood as a prime example of the devastating potential of such events. Eight to ten days after the flash flood event, damage assessment and data collection were conducted in Braunsbach by investigating all affected buildings and their surroundings. To record and store the data on site, the open-source software bundle KoBoCollect was used as an efficient and easy way to gather information. Since the damage driving factors of flash floods are expected to differ from those of riverine flooding, a post-hoc data analysis was performed, aiming to identify the influence of flood processes and building attributes on damage grades, which reflect the extent of structural damage. Data analyses include the application of random forest, a random general linear model and multinomial logistic regression as well as the construction of a local impact map to reveal influences on the damage grades. Further, a Spearman's Rho correlation matrix was calculated. The results reveal that the damage driving factors of flash floods differ from those of riverine floods to a certain extent. The exposition of a building in flow direction shows an especially strong correlation with the damage grade and has a high predictive power within the constructed damage models. Additionally, the results suggest that building materials as well as various building aspects, such as the existence of a shop window and the surroundings, might have an effect on the resulting damage. To verify and confirm the outcomes as well as to support future mitigation strategies, risk management and planning, more comprehensive and systematic data collection is necessary. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 653 KW - building damage KW - mai 29th KW - flow KW - vulnerability KW - 2016-origin KW - pathways KW - Germany KW - impacts KW - model Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-418392 SN - 1866-8372 IS - 653 ER - TY - JOUR A1 - van Kleunen, Mark A1 - Essl, Franz A1 - Pergl, Jan A1 - Brundu, Giuseppe A1 - Carboni, Marta A1 - Dullinger, Stefan A1 - Early, Regan A1 - Gonzalez-Moreno, Pablo A1 - Groom, Quentin J. M. A1 - Hulme, Philip E. A1 - Kueffer, Christoph A1 - Kühn, Ingolf A1 - Maguas, Cristina A1 - Maurel, Noelie A1 - Novoa, Ana A1 - Parepa, Madalin A1 - Pysek, Petr A1 - Seebens, Hanno A1 - Tanner, Rob A1 - Touza, Julia A1 - Verbrugge, Laura A1 - Weber, Ewald A1 - Dawson, Wayne A1 - Kreft, Holger A1 - Weigelt, Patrick A1 - Winter, Marten A1 - Klonner, Guenther A1 - Talluto, Matthew V. A1 - Dehnen-Schmutz, Katharina T1 - The changing role of ornamental horticulture in alien plant invasions JF - Biological reviews N2 - The number of alien plants escaping from cultivation into native ecosystems is increasing steadily. We provide an overview of the historical, contemporary and potential future roles of ornamental horticulture in plant invasions. We show that currently at least 75% and 93% of the global naturalised alien flora is grown in domestic and botanical gardens, respectively. Species grown in gardens also have a larger naturalised range than those that are not. After the Middle Ages, particularly in the 18th and 19th centuries, a global trade network in plants emerged. Since then, cultivated alien species also started to appear in the wild more frequently than non-cultivated aliens globally, particularly during the 19th century. Horticulture still plays a prominent role in current plant introduction, and the monetary value of live-plant imports in different parts of the world is steadily increasing. Historically, botanical gardens - an important component of horticulture - played a major role in displaying, cultivating and distributing new plant discoveries. While the role of botanical gardens in the horticultural supply chain has declined, they are still a significant link, with one-third of institutions involved in retail-plant sales and horticultural research. However, botanical gardens have also become more dependent on commercial nurseries as plant sources, particularly in North America. Plants selected for ornamental purposes are not a random selection of the global flora, and some of the plant characteristics promoted through horticulture, such as fast growth, also promote invasion. Efforts to breed non-invasive plant cultivars are still rare. Socio-economical, technological, and environmental changes will lead to novel patterns of plant introductions and invasion opportunities for the species that are already cultivated. We describe the role that horticulture could play in mediating these changes. We identify current research challenges, and call for more research efforts on the past and current role of horticulture in plant invasions. This is required to develop science-based regulatory frameworks to prevent further plant invasions. KW - botanical gardens KW - climate change KW - horticulture KW - naturalised plants KW - ornamental plants KW - pathways KW - plant invasions KW - plant nurseries KW - trade KW - weeds Y1 - 2018 U6 - https://doi.org/10.1111/brv.12402 SN - 1464-7931 SN - 1469-185X VL - 93 IS - 3 SP - 1421 EP - 1437 PB - Wiley CY - Hoboken ER - TY - GEN A1 - Moradian, Hanieh A1 - Roch, Toralf A1 - Lendlein, Andreas A1 - Gossen, Manfred T1 - mRNA transfection-induced activation of primary human monocytes and macrophages BT - Dependence on carrier system and nucleotide modifcation T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Monocytes and macrophages are key players in maintaining immune homeostasis. Identifying strategies to manipulate their functions via gene delivery is thus of great interest for immunological research and biomedical applications. We set out to establish conditions for mRNA transfection in hard-to-transfect primary human monocytes and monocyte-derived macrophages due to the great potential of gene expression from in vitro transcribed mRNA for modulating cell phenotypes. mRNA doses, nucleotide modifications, and different carriers were systematically explored in order to optimize high mRNA transfer rates while minimizing cell stress and immune activation. We selected three commercially available mRNA transfection reagents including liposome and polymer-based formulations, covering different application spectra. Our results demonstrate that liposomal reagents can particularly combine high gene transfer rates with only moderate immune cell activation. For the latter, use of specific nucleotide modifications proved essential. In addition to improving efficacy of gene transfer, our findings address discrete aspects of innate immune activation using cytokine and surface marker expression, as well as cell viability as key readouts to judge overall transfection efficiency. The impact of this study goes beyond optimizing transfection conditions for immune cells, by providing a framework for assessing new gene carrier systems for monocyte and macrophage, tailored to specific applications. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1403 KW - sirna transfection KW - mediated delivery KW - gene delivery KW - efficient KW - immunogenicity KW - lipoplexes KW - cells KW - therapeutics KW - polarization KW - pathways Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-515694 SN - 1866-8372 IS - 1 ER - TY - JOUR A1 - Moradian, Hanieh A1 - Roch, Toralf A1 - Lendlein, Andreas A1 - Gossen, Manfred T1 - mRNA transfection-induced activation of primary human monocytes and macrophages BT - Dependence on carrier system and nucleotide modifcation JF - Scientific reports N2 - Monocytes and macrophages are key players in maintaining immune homeostasis. Identifying strategies to manipulate their functions via gene delivery is thus of great interest for immunological research and biomedical applications. We set out to establish conditions for mRNA transfection in hard-to-transfect primary human monocytes and monocyte-derived macrophages due to the great potential of gene expression from in vitro transcribed mRNA for modulating cell phenotypes. mRNA doses, nucleotide modifications, and different carriers were systematically explored in order to optimize high mRNA transfer rates while minimizing cell stress and immune activation. We selected three commercially available mRNA transfection reagents including liposome and polymer-based formulations, covering different application spectra. Our results demonstrate that liposomal reagents can particularly combine high gene transfer rates with only moderate immune cell activation. For the latter, use of specific nucleotide modifications proved essential. In addition to improving efficacy of gene transfer, our findings address discrete aspects of innate immune activation using cytokine and surface marker expression, as well as cell viability as key readouts to judge overall transfection efficiency. The impact of this study goes beyond optimizing transfection conditions for immune cells, by providing a framework for assessing new gene carrier systems for monocyte and macrophage, tailored to specific applications. KW - sirna transfection KW - mediated delivery KW - gene delivery KW - efficient KW - immunogenicity KW - lipoplexes KW - cells KW - therapeutics KW - polarization KW - pathways Y1 - 2020 U6 - https://doi.org/10.1038/s41598-020-60506-4 SN - 2045-2322 VL - 10 IS - 1 SP - 1 EP - 15 PB - Springer Nature CY - London ER -