TY - THES A1 - Worseck, Gábor T1 - The transverse proximity effect in quasar spectra T1 - Der Transversale Proximity-Effekt in Quasarspektren N2 - The intergalactic medium is kept highly photoionised by the intergalactic UV background radiation field generated by the overall population of quasars and galaxies. In the vicinity of sources of UV photons, such as luminous high-redshift quasars, the UV radiation field is enhanced due to the local source contribution. The higher degree of ionisation is visible as a reduced line density or generally as a decreased level of absorption in the Lyman alpha forest of neutral hydrogen. This so-called proximity effect has been detected with high statistical significance towards luminous quasars. If quasars radiate rather isotropically, background quasar sightlines located near foreground quasars should show a region of decreased Lyman alpha absorption close to the foreground quasar. Despite considerable effort, such a transverse proximity effect has only been detected in a few cases. So far, studies of the transverse proximity effect were mostly limited by the small number of suitable projected pairs or groups of high-redshift quasars. With the aim to substantially increase the number of quasar groups in the vicinity of bright quasars we conduct a targeted survey for faint quasars around 18 well-studied quasars at employing slitless spectroscopy. Among the reduced and calibrated slitless spectra of 29000 objects on a total area of 4.39 square degrees we discover in total 169 previously unknown quasar candidates based on their prominent emission lines. 81 potential z>1.7 quasars are selected for confirmation by slit spectroscopy at the Very Large Telescope (VLT). We are able to confirm 80 of these. 64 of the newly discovered quasars reside at z>1.7. The high success rate of the follow-up observations implies that the majority of the remaining candidates are quasars as well. In 16 of these groups we search for a transverse proximity effect as a systematic underdensity in the HI Lyman alpha absorption. We employ a novel technique to characterise the random absorption fluctuations in the forest in order to estimate the significance of the transverse proximity effect. Neither low-resolution spectra nor high-resolution spectra of background quasars of our groups present evidence for a transverse proximity effect. However, via Monte Carlo simulations the effect should be detectable only at the 1-2sigma level near three of the foreground quasars. Thus, we cannot distinguish between the presence or absence of a weak signature of the transverse proximity effect. The systematic effects of quasar variability, quasar anisotopy and intrinsic overdensities near quasars likely explain the apparent lack of the transverse proximity effect. Even in absence of the systematic effects, we show that a statistically significant detection of the transverse proximity effect requires at least 5 medium-resolution quasar spectra of background quasars near foreground quasars whose UV flux exceeds the UV background by a factor 3. Therefore, statistical studies of the transverse proximity effect require large numbers of suitable pairs. Two sightlines towards the central quasars of our survey fields show intergalactic HeII Lyman alpha absorption. A comparison of the HeII absorption to the corresponding HI absorption yields an estimate of the spectral shape of the intergalactic UV radiation field, typically parameterised by the HeII/HI column density ratio eta. We analyse the fluctuating UV spectral shape on both lines of sight and correlate it with seven foreground quasars. On the line of sight towards Q0302-003 we find a harder radiation field near 4 foreground quasars. In the direct vicinity of the quasars eta is consistent with values of 25-100, whereas at large distances from the quasars eta>200 is required. The second line of sight towards HE2347-4342 probes lower redshifts where eta is directly measurable in the resolved HeII forest. Again we find that the radiation field near the 3 foreground quasars is significantly harder than in general. While eta still shows large fluctuations near the quasars, probably due to radiative transfer, the radiation field is on average harder near the quasars than far away from them. We interpret these discoveries as the first detections of the transverse proximity effect as a local hardness fluctuation in the UV spectral shape. No significant HI proximity effect is predicted for the 7 foreground quasars. In fact, the HI absorption near the quasars is close to or slightly above the average, suggesting that the weak signature of the transverse proximity effect is masked by intrinsic overdensities. However, we show that the UV spectral shape traces the transverse proximity effect even in overdense regions or at large distances. Therefore, the spectral hardness is a sensitive physical measure of the transverse proximity effect that is able to break the density degeneracy affecting the traditional searches. N2 - Das intergalaktische Medium wird durch das intergalaktische UV-Hintergrundsstrahlungsfeld in einem hochgradig photoionisierten Zustand gehalten. Der UV-Hintergrund stammt von der gesamten Population von Quasaren und Galaxien. In der Nähe von leuchtkräftigen Quasaren, ist das UV-Strahlungsfeld lokal erhöht durch den Anteil der Quelle. Der höhere Ionisationsgrad ist beobachtbar als eine reduzierte Liniendichte oder allgemein als ein vermindertes Maß an Absorption im Lyman-alpha Wald des neutralen Wasserstoffs. Dieser sogenannte Proximity-Effekt ist bei leuchtkräftigen Quasaren mit hoher statistischer Signifikanz nachgewiesen worden. Falls Quasare fast isotrop strahlen, dann sollten Sichtlinien zu Hintergrundquasaren in der Nähe von Vordergrundquasaren eine Region mit verminderter Absorption zeigen. Trotz beträchtlichen Aufwands wurde solch ein transversaler Proximity-Effekt nur in wenigen Fällen entdeckt. Bisher waren Studien des transversalen Proximity-Effekts meist begrenzt durch die kleine Anzahl von geeigneten projizierten Paaren oder Gruppen von hochrotverschobenen Quasaren. Mit dem Ziel die Zahl der Quasargruppen in der Nähe von hellen Quasaren beträchtlich zu erhöhen, führen wir eine gezielte Suche nach schwachen Quasaren um 18 oft studierte Quasare durch. Unter den reduzierten und kalibrierten spaltlosen Spektren von 29000 Objekten auf einer Gesamtfläche von 4.39 Quadratgrad entdecken wir insgesamt 169 vorher unbekannte Quasarkandidaten anhand ihrer Emissionslinien. 81 potentielle z>1.7 Quasare werden ausgesucht zur Bestätigung mittels Spaltspektroskopie am Very Large Telescope (VLT). Wir können 80 von diesen als Quasare bestätigen. 64 der neu entdeckten Quasare liegen bei z>1.7. Die hohe Erfolgsrate der Nachfolgebeobachtungen deutet an, dass die Mehrzahl der verbleibenden Kandidaten ebenfalls Quasare sind. In 16 dieser Gruppen suchen wir nach dem transversalen Proximity-Effekt als eine systematische Unterdichte in der HI Lyman-alpha-Absorption. Wir nutzen eine neuartige Methode die zufälligen Absorptionsfluktuationen zu charakterisieren, um die Signifikanz des transversalen Proximity-Effekts abschätzen zu können. Weder schwach aufgelöste noch hoch aufgelöste Spektren von Hintergrundquasaren unserer Gruppen zeigen Anzeichen für einen transversalen Proximity-Effekt. Aufgrund von Monte Carlo Simulationen sollte der Effekt jedoch nur schwach in der Nähe von 3 Vordergrundquasaren detektierbar sein. Deshalb können wir nicht zwischen An- oder Abwesenheit des Effekts unterscheiden. Selbst in Abwesenheit von systematischen Effekten zeigen wir, dass eine statistisch signifikante Detektion des transversalen Proximity-Effekts mindestens 5 Hintergrundquasarspektren bei mittlerer Auflösung nahe Vordergrundquasaren erfordert, deren UV-Fluss den UV-Hintergrund um einen Faktor 3 übersteigt. Deshalb erfordern statistische Studien des transversalen Proximity-Effekts große Zahlen von geeigneten Quasaren. Zwei Sichtlinien zeigen HeII-Absorption. Ein Vergleich der HeII-Absorption mit der entsprechenden HI-Absorption liefert eine Abschätzung der Spektralform des UV-Strahlungsfelds, das typischerweise durch das HeII/HI Säulendichteverhältnis eta parameterisiert wird. Wir analysieren die fluktuierende spektrale Form des UV-Strahlungsfelds auf beiden Sichtlinien und korrelieren sie mit 7 Vordergrundquasaren. Auf der Sichtlinie zu Q0302-003 finden wir ein härteres Strahlungsfeld nahe 4 Vordergrundquasaren. In der direkten Umgebung der Quasare ist eta konsistent mit Werten von 25-100, wogegen bei großen Entfernungen zu den Quasaren eta>200 erforderlich ist. Die zweite Sichtlinie zu HE2347-4342 sondiert kleinere Rotverschiebungen. Wieder finden wir, dass das Strahlungsfeld nahe der 3 Vordergrundquasaren signifikant härter ist als im allgemeinen. Während eta trotzdem große Fluktuationen nahe den Quasaren aufweist, die wahrscheinlich von Strahlungstransport herrühren, ist das Strahlungsfeld in der Nähe der Quasare im Mittel härter als in großer Entfernung. Wir interpretieren diese Entdeckungen als die ersten Detektionen des transversalen Proximity-Effekts als eine lokale Fluktuation im spektralen Härtegrad. Kein signifikanter HI Proximity-Effekt ist für die 7 Vordergrundquasare vorhergesagt. Tatsächlich ist die HI-Absorption nahe den Quasaren nahe am oder etwas über dem Mittelwert, was darauf hindeutet, dass die schwache Signatur des transversalen Proximity-Effekts maskiert wird durch intrinsische Überdichten. Jedoch zeigen wir, dass der Härtegrad den transversalen Proximity-Effekt selbst in überdichten Regionen oder auf großen Distanzen sichtbar werden läßt. Deshalb ist der spektrale Härtegrad ein empfindliches physikalisches Maß für den transversalen Proximity-Effekt, der in der Lage ist, die Dichteentartung zu brechen, die die traditionelle Suche behindert. KW - Quasar KW - Proximity-Effekt KW - intergalaktisches Medium KW - quasar KW - proximity effect KW - intergalactic medium Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-18738 ER - TY - THES A1 - Hildebrandt, Dominik T1 - The HI Lyman-alpha opacity at redshift 2.7 < z < 3.6 T1 - Die HI-Lyman-α-Opazität im Rotverschiebungsbereich 2.7 < z < 3.6 N2 - Most of the baryonic matter in the Universe resides in a diffuse gaseous phase in-between galaxies consisting mostly of hydrogen and helium. This intergalactic medium (IGM) is distributed in large-scale filaments as part of the overall cosmic web. The luminous extragalactic objects that we can observe today, such as galaxies and quasars, are surrounded by the IGM in the most dense regions within the cosmic web. The radiation of these objects contributes to the so-called ultraviolet background (UVB) which keeps the IGM highly ionized ever since the epoch of reionization. Measuring the amount of absorption due to intergalactic neutral hydrogen (HI) against extragalactic background sources is a very useful tool to constrain the energy input of ionizing sources into the IGM. Observations suggest that the HI Lyman-alpha effective optical depth, τ_eff, decreases with decreasing redshift, which is primarily due to the expansion of the Universe. However, some studies find a smaller value of the effective optical depth than expected at the specific redshift z~3.2, possibly related to the complete reionization of helium in the IGM and a hardening of the UVB. The detection and possible cause of a decrease in τ_eff at z~3.2 is controversially debated in the literature and the observed features need further explanation. To better understand the properties of the mean absorption at high redshift and to provide an answer for whether the detection of a τ_eff feature is real we study 13 high-resolution, high signal-to-noise ratio quasar spectra observed with the Ultraviolet and Visual Echelle Spectrograph (UVES) at the Very Large Telescope (VLT). The redshift evolution of the effective optical depth, τ_eff(z), is measured in the redshift range 2.7≤z≤3.6. The influence of metal absorption features is removed by performing a comprehensive absorption-line-fitting procedure. In the first part of the thesis, a line-parameter analysis of the column density, N, and Doppler parameter, b, of ≈7500 individually fitted absorption lines is performed. The results are in good agreement with findings from previous surveys. The second (main) part of this thesis deals with the analysis of the redshift evolution of the effective optical depth. The τ_eff measurements vary around the empirical power law τ_eff(z)~(1+z)^(γ+1) with γ=2.09±0.52. The same analysis as for the observed spectra is performed on synthetic absorption spectra. From a comparison between observed and synthetic spectral data it can be inferred that the uncertainties of the τ_eff values are likely underestimated and that the scatter is probably caused by high-column-density absorbers with column densities in the range 15≤logN≤17. In the real Universe, such absorbers are rarely observed, however. Hence, the difference in τ_eff from different observational data sets and absorption studies is most likely caused by cosmic variance. If, alternatively, the disagreement between such data is a result of an too optimistic estimate of the (systematic) errors, it is also possible that all τ_eff measurements agree with a smooth evolution within the investigated redshift range. To explore in detail the different analysis techniques of previous studies an extensive literature comparison to the results of this work is presented in this thesis. Although a final explanation for the occurrence of the τ_eff deviation in different studies at z~3.2 cannot be given here, our study, which represents the most detailed line-fitting analysis of its kind performed at the investigated redshifts so far, represents another important benchmark for the characterization of the HI Ly-alpha effective optical depth at high redshift and its indicated unusual behavior at z~3.2. N2 - Der Großteil der baryonischen Materie des Universums, die im Wesentlichen aus Wasserstoff und Helium besteht, befindet sich in Form von diffusem Gas zwischen den Galaxien. Dieses intergalaktische Medium (IGM) bildet großräumige Strukturen aus, dessen Filamente als "kosmisches Netz" bezeichnet werden. Die leuchtkräftigen extragalaktischen Objekte, die man heutzutage beobachten kann (z.B. Galaxien und Quasare), sind von diesem IGM umgeben und befinden sich in den dichtesten Regionen innerhalb des kosmischen Netzes. Die von diesen Objekten ausgehende ultraviolette (UV) Strahlung ist Bestandteil des UV-Strahlungshintergrunds, der seit der Reionisationsphase den hochionisierten Zustand des IGM aufrecht hält. Eine Auswertung des absorbierten Strahlungsanteils durch den noch im IGM vorhandenen neutralen Wasserstoff (HI) entlang der Sichtlinie zu einer beobachteten extragalaktischen Hintergrundquelle lässt auf den Energieeintrag der Strahlungsquellen ins IGM schließen. Aus geeigneten Messdaten lässt sich schlussfolgern, dass sich die effektive optische Tiefe von HI (Ly-alpha Übergang) mit abnehmender Rotverschiebung verringert, was im Wesentlichen auf die Expansion des Universums zurückzuführen ist. Einige Arbeiten finden jedoch bei der ausgewiesenen Rotverschiebung z~3.2 einen kleineren Wert für die effektive optische Tiefe als erwartet, ein Trend der möglicherweise mit der vollständigen Reionisation von Helium im IGM und einem Anstieg der Intensität des UV-Hintergrunds in Verbindung steht. Die Detektion und mögliche Ursache einer Abnahme der effektiven optischen Tiefe bei z~3.2 ist in der Literatur kontrovers diskutiert und die beobachteten Besonderheiten machen eine weitere Untersuchung erforderlich. Um die Eigenschaften der mittleren Absorption bei hoher Rotverschiebung besser zu verstehen und um einen Lösungsansatz für die Debatte zu liefern, untersuchen wir 13 hoch aufgelöste Quasarabsorptionsspektren mit einem hohen Signal-zu-Rauschen Verhältnis, die mit dem Instrument UVES des Very Large Telescope (VLT) aufgenommen wurden. Die Entwicklung der effektiven optischen Tiefe wird im Rotverschiebungsbereich 2.7≤z≤3.6 gemessen. Die Messung wird um den Beitrag von Metallen durch die detaillierte Anpassung von Linienprofilen an die beobachtete Absorption korrigiert. Im ersten Teil der Arbeit wird eine Auswertung der Parameter der ≈7500 einzeln angepassten Absorptionslinien (Säulendichte N und Doppler-Parameter b) vorgenommen. Die entsprechenden Ergebnisse stimmen im Rahmen der Messunsicherheiten mit Literaturwerten überein. Der Hauptteil der Arbeit beschäftigt sich mit der Berechnung der effektiven optischen Tiefe in Abhängigkeit von der Rotverschiebung τ_eff(z). Es stellt sich heraus, dass die τ_eff-Messwerte um ein empirisches Potengesetz der Form τ_eff(z)~(1+z)^(γ+1) mit γ=2.09±0.52 streuen. Die gleiche Auswertung wie für die Beobachtungsdaten wird für synthetische Spektren durchgeführt. Ein Vergleich dieser Daten legt nahe, dass die Größe der Unsicherheiten der τ_eff-Messwerte wahrscheinlich unterschätzt wird und dass die Streuung der Datenpunkte auf Absorber hoher Säulendichte (15≤logN≤17) zurückzuführen ist. Solche Absorber sind im beobachtbaren Universum jedoch selten, sodass der Unterschied in den τ_eff-Messwerten bei verschiedenen Zusammenstellungen von Beobachtungsdaten und Studien zum Absorptionsverhalten höchstwahrscheinlich durch kosmische Varianz bedingt ist. Sollte jedoch die fehlende Übereinstimmung dieser Daten eine Folge zu optimistischer (systematischer) Fehlerabschätzungen sein, so ist es ebenfalls denkbar, dass die τ_eff-Messwerte mit einer gleichmäßigen Entwicklung über den untersuchten Rotverschiebungsbereich hinweg konsistent sind. Um die wesentlichen Unterschiede in den Untersuchungsmethoden vorheriger Studien zu untersuchen, wird in dieser Arbeit ein umfassender Vergleich der Ergebnisse dieser Arbeit mit entsprechender Literatur vorgenommen. Eine endgültige Erklärung für das Auftreten einer Abweichung in τ_eff(z) vom empirischen Potenzgesetz, wie sie von einigen Studien bei z~3.2 gefunden wurde, kann in dieser Arbeit zwar nicht gegeben werden, dennoch stellt sie die bislang umfassendste Parameterbestimmung von Absorptionslinien ihrer Art im untersuchten Rotverschiebungsbereich dar. Sie ist somit ein weiterer wichtiger Schritt in Richtung des ganzheitlichen Verständnisses der effektiven optischen Tiefe bei hohen Rotverschiebungen und deren möglicherweise ungewöhnlichem Verlauf bei z~3.2. KW - intergalactic medium KW - cosmology: observations KW - methods: data analysis KW - methods: statistical KW - quasars: absorption lines KW - intergalaktisches Medium KW - Kosmologie: Beobachtungen KW - Methoden: Datenauswertung KW - Methoden: statistisch KW - Quasare: Absorptionslinien Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-78355 ER - TY - THES A1 - Bouma, Sietske T1 - The circum- and intergalactic medium and its connection to the large scale structure in the nearby universe T1 - Das zirkum- und intergalaktisches Medium und sein Zusammenhang mit der großräumigen Struktur im dem nahen Universum N2 - The majority of baryons in the Universe is believed to reside in the intergalactic medium (IGM). This makes the IGM an important component in understanding cosmological structure formation. It is expected to trace the same dark matter distribution as galaxies, forming structures like filaments and clusters. However, whereas galaxies can be observed to be arranged along these large-scale structures, the spatial distribution of the diffuse IGM is not as easily unveiled. Absorption line studies of quasar (QSO) spectra can help with mapping the IGM, as well as the boundary layer between IGM and galaxies: the circumgalactic medium (CGM). By studying gas in the Local Group, as well as in the IGM, this study aims to get a better understanding of how the gas is linked to the large-scale structure of the local Universe and the galaxies residing in that structure. Chapter 1 gives an introduction to the CGM and IGM, while the methods used in this study are explained in Chapter 2. Chapter 3 starts on a relatively small cosmological scale, namely that of our Local Group, which includes i.a. the Milky Way (MW) and the M31. Within the CGM of the MW, there exist denser clouds, some of which are infalling while others are moving away from the Galactic disc. To study these clouds, 29 QSO spectra obtained with the Cosmic Origins Spectrograph (COS) aboard the Hubble Space Telescope (HST) were analysed. Abundances of Si II, Si III, Si IV, C II, and C IV were measured for 69 HVCs belonging to two samples: one in the direction of the LG’s barycentre and the other in the anti-barycentre direction. Their velocities range from -100 ≥ vLSR ≥ -400 km/s for the barycentre sample and between +100 ≤ vLSR ≤ +300 km/s for the anti-barycentre sample. By using Cloudy models, these data could then be used to derive gas volume densities for the HVCs. Because of the relationship between density and pressure of the ambient medium, which is in turn determined by the Galactic radiation field, the distances of the HVCs could be estimated. From this, a subsample of absorbers located in the direction of M31 was found to exist outside of the MW’s virial radius, their low densities (log nH ≤ -3.54) making it likely for them to be part of the gas in between the MW and M31. No such low-density absorbers were found in the anti-barycentre sample. Our results thus hint at gas following the dark matter potential, which would be deeper between the MW and M31 as they are by far the most massive members of the LG. From this bridge of gas in the LG, this study zooms out to the large-scale structure of the local Universe (z ~ 0) in Chapter 4. Galaxy data from the V8k catalogue and QSO spectra from COS were used to study the relation between the galaxies tracing large-scale filaments and the gas existing outside of those galaxies. This study used the filaments defined in Courtois et al. (2013). A total of 587 Lyman α (Lyα) absorbers were found in the 302 QSO spectra in the velocity range 1070 - 6700 km/s. After selecting sightlines passing through or close to these filaments, model spectra were made for 91 sightlines and 215 (227) Lyα absorbers (components) were measured in this sample. The velocity gradient along each filament was calculated and 74 absorbers were found within 1000 km/s of the nearest filament segment. In order to find whether the absorbers are more tied to galaxies or to the large-scale structure, equivalent widths of the Lyα absorbers were plotted against both galaxy and filament impact parameters. While stronger absorbers do tend to be closer to either galaxies or filaments, there is a large scatter in this relation. Despite this large scatter, this study found that the absorbers do not follow a random distribution either. They cluster less strongly around filaments than galaxies, but stronger than random distributions, as confirmed by a Kolmogorov-Smirnov test. Furthermore, the column density distribution function found in this study has a slope of -β = 1.63±0.12 for the total sample and -β =1.47±0.24 for the absorbers within 1000 km/s of a filament. The shallower slope for the latter subsample could indicate an excess of denser absorbers within the filament, but they are consistent within errors. These values are in agreement with values found in e.g. Lehner et al. (2007); Danforth et al. (2016). The picture that emerges from this study regarding the relation between the IGM and the large-scale structure in the local Universe fits with what is found in other studies: while at least part of the gas traces the same filamentary structure as galaxies, the relation is complex. This study has shown that by taking a large sample of sightlines and comparing the data gathered from those with galaxy data, it is possible to study the gaseous large-scale structure. This approach can be used in the future together with simulations to get a better understanding of structure formation and evolution in the Universe. N2 - Sterne und Galaxien, die das Universum füllen, haben sich alle aus Gas gebildet. Bis heute bleibt der Großteil der baryonischen Materie im Universum im gasförmigen Zustand, und nur ein geringer Anteil davon ist kollabiert, um Sterne und Galaxien entstehen zu lassen. Der Gravitationskollaps folgt den Potentialtöpfen der Dunklen Materie, wodurch sich die großräumige Struktur (large-scale structures, LSS) des Universums formt. Die Galaxien innerhalb dieser Struktur ordnen sich entlang der Schichten, Filamenten und um die Knotenpunkte, wobei die Regionen niedriger Dichte (Voids) dazwischen liegen. Das diffuse Gas füllt diese Strukturen ebenfalls und stellt somit ein Reservoir der baryonischen Materie den Galaxien für die weitere Sternbildung zur Verfügung. Galaxien wiederum reichen das umgebende diffuse Gas an. Darum spielt das Gas um und zwischen Galaxien, das zirkum- bzw. intergalaktisches Medium (circum-/intergalactic medium, CGM/IGM), eine wichtige Rolle in der Entstehung und Entwicklung der Galaxien und LSS im Universum. Ziel dieses Promotionsprojektes ist es, ein besseres Verständnis über die Zusammenhänge zwischen demintergalaktischen Gas und LSS mit darin befindlichen Galaxien im lokalen Universum zu erhalten. Die Verteilung de Gases im IGM ist aufgrund der diffusen Beschaffenheit schwer nachzuweisen. Eine der Möglichkeiten es zu untersuchen, ist die Betrachtung der Absorptionsmerkmale in den Spektren der weitentfernten Quasare (QSOs). IGM, das vom Licht dieser QSOs auf dem Weg zum Beobachter durchquert wird, hinterlässt im Spektrum die charakteristischen Absoprtionslinien. Wir analysieren in diesem Promotionsprojekt eine große Anzahl von QSO-Spektren, die vom Cosmic Origin Spectrograph an Bord des Hubble-Weltraumteleskop stammen, um den physikalischen Zustand des intervenierenden intergalaktischen und zirkumgalaktischen Gas im nahen Universumzu untersuchen. Im ersten Teil dieser Dissertation untersuchen wir anhand der sogenannten Hochgeschwindigkeitswolken (high-velocity clouds, HVCs) das CGM um die Milchstraße in Richtung des Baryzentrums und Anti-Baryzentrums der Galaxien der Lokalen Gruppe (LG). Die HVCs haben Radialgeschwindigkeiten von über 80 kms¡1 und können sehr unterschiedliche Herkunft haben. Wir vermessen die Häufigkeiten verschiedener Ionen von Si und C für 69 HVCs sowie deren Kinematik. Daraus werden physikalische Eigenschaften der Wolken abgeleitet, die auf eine Teilstichprobe besonders interessanter Absorber in Richtung des Baryzentrums hinweisen. Diese Teilstichprobe besteht aus HVCs mit sehr geringen Gasdichten (log n(H) < -3.54), was darauf hindeutet, dass diese Wolken sich höchstwahrscheinlich außerhalb des Virialradius der Milchstraße in der gasförmigen Brücke befinden, die die Milchstraße und die Nachbargalaxie M31 verbindet. Ausgehend von dieser gasförmigen Brücke in unserer LG zoomen wir im zweiten Teil des Dissertation heraus, um einen Überblick über die Gasverteilung im lokalen Universum auf größeren Skalen zu erhalten. Wir analysieren die Lyman-α (Lyα) -Absorption des neutralen Wasserstoffs (H I) in 302 QSO-Spektren aus allen Himmelsrichtungen und kombinieren diese Daten mit denen von Galaxiefilamenten, die im V8k Katalog von Courtois et al. (2013) identifiziert wurden. Von den 587 HI Lyα-Absorptionssystemen befinden sich 215 in der Nähe von Galaxiefilamenten. Die stärkeren Absorber befinden sich häufig in der Nähe von Galaxien oder näher an den Mittelachsen der Filamente, aber diese Beziehung zeigt eine große Streuung. Die Lyα-Absorber neigen dazu, sich stärker um die Filamentachsen zu gruppieren im Vergleich zu einer zufälligen Population von Absorbern, wenn auch nicht so stark wie Galaxien. Dies weist darauf hin, dass die Lyα-Absorber zwar der großräumigen Struktur folgen, jedoch auf ihre eigene Weise. Schließlich zeigt eine statistische Analyse der Absorberstärken, dass sich die Verteilung der HI-Säulendichten von Region außerhalb zu Regionen innerhalb der Filamente ändert, was die grundsätzlich höhere Dichte der Materie in letzteren widerspiegelt. DasGesamtergebnis dieser Dissertation stimmt gut mit den Ergebnissen anderer Studien überein: auch wenn ein Teil des intergalaktischen Gases denselben kosmologischen Filamentstrukturen wie Galaxien folgt, bleibt die Beziehung zwischen Gas, Galaxien und großräumigen Struktur komplex. Die hochauflösende kosmologische Simulationen zusammen mit den zukünftigen Beobachtungen werden helfen diesen Zusammenhang besser zu verstehen. KW - Astrophysics KW - Spectroscopy KW - Circumgalactic Medium KW - Intergalactic Medium KW - Large-scale Structure KW - Astrophysik KW - zirkumgalaktisches Medium KW - intergalaktisches Medium KW - großräumige Struktur KW - Spektroskopie Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-520852 ER -