TY - THES A1 - Grosse, Guido T1 - Characterisation and evolution of periglacial landscapes in Northern Siberia during the Late Quaternary : remote sensing and GIS studies T1 - Charakterisierung und Evolution periglazialer Landschaften in Nordsibirien während des Spätquartärs : Fernerkundungs- und GIS-Studien N2 - About 24 % of the land surface in the northern hemisphere are underlayed by permafrost in various states. Permafrost aggradation occurs under special environmental conditions with overall low annual precipitation rates and very low mean annual temperatures. Because the general permafrost occurrence is mainly driven by large-scale climatic conditions, the distribution of permafrost deposits can be considered as an important climate indicator. The region with the most extensive continuous permafrost is Siberia. In northeast Siberia, the ice- and organic-rich permafrost deposits of the Ice Complex are widely distributed. These deposits consist mostly of silty to fine-grained sandy sediments that were accumulated during the Late Pleistocene in an extensive plain on the then subaerial Laptev Sea shelf. One important precondition for the Ice Complex sedimentation was, that the Laptev Sea shelf was not glaciated during the Late Pleistocene, resulting in a mostly continuous accumulation of permafrost sediments for at least this period. This shelf landscape became inundated and eroded in large parts by the Holocene marine transgression after the Last Glacial Maximum. Remnants of this landscape are preserved only in the present day coastal areas. Because the Ice Complex deposits contain a wide variety of palaeo-environmental proxies, it is an excellent palaeo-climate archive for the Late Quaternary in the region. Furthermore, the ice-rich Ice Complex deposits are sensible to climatic change, i.e. climate warming. Because of the large-scale climatic changes at the transition from the Pleistocene to the Holocene, the Ice Complex was subject to extensive thermokarst processes since the Early Holocene. Permafrost deposits are not only an environmental indicator, but also an important climate factor. Tundra wetlands, which have developed in environments with aggrading permafrost, are considered a net sink for carbon, as organic matter is stored in peat or is syn-sedimentary frozen with permafrost aggradation. Contrary, the Holocene thermokarst development resulted in permafrost degradation and thus the release of formerly stored organic carbon. Modern tundra wetlands are also considered an important source for the climate-driving gas methane, originating mainly from microbial activity in the seasonal active layer. Most scenarios for future global climate development predict a strong warming trend especially in the Arctic. Consequently, for the understanding of how permafrost deposits will react and contribute to such scenarios, it is necessary to investigate and evaluate ice-rich permafrost deposits like the widespread Ice Complex as climate indicator and climate factor during the Late Quaternary. Such investigations are a pre-condition for the precise modelling of future developments in permafrost distribution and the influence of permafrost degradation on global climate. The focus of this work, which was conducted within the frame of the multi-disciplinary joint German-Russian research projects "Laptev Sea 2000" (1998-2002) and "Dynamics of Permafrost" (2003-2005), was twofold. First, the possibilities of using remote sensing and terrain modelling techniques for the observation of periglacial landscapes in Northeast Siberia in their present state was evaluated and applied to key sites in the Laptev Sea coastal lowlands. The key sites were situated in the eastern Laptev Sea (Bykovsky Peninsula and Khorogor Valley) and the western Laptev Sea (Cape Mamontovy Klyk region). For this task, techniques using CORONA satellite imagery, Landsat-7 satellite imagery, and digital elevation models were developed for the mapping of periglacial structures, which are especially indicative of permafrost degradation. The major goals were to quantify the extent of permafrost degradation structures and their distribution in the investigated key areas, and to establish techniques, which can be used also for the investigation of other regions with thermokarst occurrence. Geographical information systems were employed for the mapping, the spatial analysis, and the enhancement of classification results by rule-based stratification. The results from the key sites show, that thermokarst, and related processes and structures, completely re-shaped the former accumulation plain to a strongly degraded landscape, which is characterised by extensive deep depressions and erosional remnants of the Late Pleistocene surface. As a results of this rapid process, which in large parts happened within a short period during the Early Holocene, the hydrological and sedimentological regime was completely changed on a large scale. These events resulted also in a release of large amounts of organic carbon. Thermokarst is now the major component in the modern periglacial landscapes in terms of spatial extent, but also in its influence on hydrology, sedimentation and the development of vegetation assemblages. Second, the possibilities of using remote sensing and terrain modelling as a supplementary tool for palaeo-environmental reconstructions in the investigated regions were explored. For this task additionally a comprehensive cryolithological field database was developed for the Bykovsky Peninsula and the Khorogor Valley, which contains previously published data from boreholes, outcrops sections, subsurface samples, and subsurface samples, as well as additional own field data. The period covered by this database is mainly the Late Pleistocene and the Holocene, but also the basal deposits of the sedimentary sequence, interpreted as Pliocene to Early Pleistocene, are contained. Remote sensing was applied for the observation of periglacial strucures, which then were successfully related to distinct landscape development stages or time intervals in the investigation area. Terrain modelling was used for providing a general context of the landscape development. Finally, a scheme was developed describing mainly the Late Quaternary landscape evolution in this area. A major finding was the possibility of connecting periglacial surface structures to distinct landscape development stages, and thus use them as additional palaeo-environmental indicator together with other proxies for area-related palaeo-environmental reconstructions. In the landscape evolution scheme, i.e. of the genesis of the Late Pleistocene Ice Complex and the Holocene thermokarst development, some new aspects are presented in terms of sediment source and general sedimentation conditions. This findings apply also for other sites in the Laptev Sea region. N2 - Die vorliegende Arbeit wurde im Rahmen der multidisziplinären Deutsch-Russischen Verbundprojekte "Laptev See 2000" (1998-2002) und "Dynamik des Permafrost" (2003-2005) erstellt. Etwa 24 % der Landoberfläche der Erde sind von Permafrost unterlagert. Die ausgedehntesten Permafrostgebiete befinden sich heute in Sibirien. In Nordostsibirien, das während der letzten Eiszeit nicht von Inlandeismassen bedeckt bedeckt war, lagerten sich während dieser Zeit mächtige eisreiche Permafrostsedimente ab. Die durch den nacheiszeitlichen Meeresspiegelanstieg um ca. 120 Meter nur noch in den heutigen Küstengebieten erhaltenen Ablagerungen sind zum Teil hervorragende Paläoklimaarchive, die verschiedenste fossile organische Überreste der Eiszeitlichen Fauna und Flora konserviert haben. Aber auch die Sedimente und das enthalten Grundeis enthalten Klimainformationen z.B. die aus Mineralogie, Ablagerungsmilieu oder geochemischer und isotopenchemischer Zusammensetzung gewonnen werden können. Der hohe Eisgehalt in den Sedimenten führte mit Beginn der holozänen Warmzeit zur Bildung von Thermokarst und Thermo-Erosion, d.h. zu starken Zersetzungserscheinungen durch Auftauen und Erosion. Thermokarst beschreibt das Schmelzen des Grundeises und die gleichzeitig stattfindende tiefe Absenkung der betroffenen Landoberfläche. Thermokarst geht mit der Bildung von Thermokarstseen einher, deren Wasserkörper ein zusätzlicher Wärmespeicher ist und das Auftauen des darunter liegenden Permafrost verstärken kann. In Sibirien, aber auch anderen Regionen der Arktis, sind weite Gebiete von Thermokarst betroffen. Der Einfluss dieser klimabedingten großräumigen Landschaftsveränderungen in Permafrostgebieten auf den lokalen, regionalen und auch globalen Stoff- und Energiehaushalt ist bisher nur wenig untersucht. Die vorliegende Arbeit beschäftigt sich mit der Charakterisierung und Evolution von periglazialen Landschaften im nordsibirischen Laptevsee-Gebiet, die seit dem Beginn des Holozän von solchen klimatisch bedingten Veränderungen betroffen sind, und liefert damit ein Puzzleteil zum einen für die Rekonstruktion der Landschaft und Landschaftsentwicklung als auch Vorraussetzungen für das Verständnis der großräumig wirkenden geologischen und geomorphologischen Veränderungsprozesse. Die generellen Schwerpunkte, für die die vorliegende Arbeit Informationen liefert, sind die Charakterisierung von periglazialen Relief- und Oberflächentypen und die Bestimmung ihrer räumlichen Verbreitung, die Identifizierung und Quantifizierung einzelner geologischer und geomorphologischer Prozesse in diesen Landschaften, und die Rekonstruktion der Entwicklung periglazialer Landschaften im Spätquartär für Schlüsselgebiete im Küstengebiet der nordsibirischen Laptevsee. Um diese generellen Schwerpunkte zu erreichen, werden verschiedene Einzelziele in der Arbeit verfolgt: Die Entwicklung and Anwendung von Satellitenfernerkundungstechniken zur Analyse periglazialer Landschaften in Nordsibirien. Dazu werden hochauflösende Corona-Satellitendaten und multispektrale Landsat-7 Satellitendaten verwendet. Die Untersuchung von Satellitenbildern, mit dem Schwerpunkt auf Oberflächen, die von der Zersetzung des eisreichen Permafrosts betroffen sind Die Entwicklung von hochauflösenden digitalen Geländemodellen für die geomorphologische Analyse in zwei Schlüsselgebieten Die räumliche Untersuchung der gewonnenen Daten mit Hilfe von geographischen Informationssystemen, mit einem Schwerpunkt auf Form, Verteilung und Außmaß von holozänem Thermokarst Das Sammeln und Auswerten von Felddaten, mit Schwerpunkt auf Oberflächeneigenschaften periglazialer Landschaften und der Zusammensetzung der Permafrostablagerungen Die Anwendung der gewonnenen Daten zur Unterstützung, Verbesserung und Ausweitung der lokal gewonnenen Felddaten und Paläoumweltrekonstruktionen, sowie die datengestützte Entwicklung von Vorstellungen zur Landschaftsgenese Weite, Permafrost-dominierte Küstentiefländer der heutigen Laptevsee in Nordost-Sibirien sind durch die spätpleistozänen Ablagerungen des Eiskomplex aufgebaut. Diese zumeist schluffig bis mittelsandigen Ablagerungen sind durch einen sehr großen Eisgehalt in Form von verteiltem Grundeis und großer syngenetischer Eiskeile, sowie einem relativ hohen Anteil an organischen Resten gekennzeichnet. Mit Beginn der holozänen Klimaerwärmung kam es zur weitläufigen Bildung von Thermokarst. KW - Dauerfrostboden KW - Periglazial KW - Periglazialgeomorphologie KW - Sibirien KW - Fernerkundung KW - Optische Fernerkundung KW - Geomorphologie KW - Permafrost KW - Thermokarst KW - Sibirien KW - Klimawandel KW - Siberia KW - Global change KW - Geomorphology Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-5544 ER - TY - THES A1 - Kobabe, Svenja T1 - Charakterisierung der mikrobiellen Lebensgemeinschaft eines sibirischen Permafrostbodens T1 - Characterisation of microbial community composition of a Siberian tundra soil N2 - Die vorliegende Arbeit wurde im Rahmen des multidisziplinären Deutsch-Russischen Verbundprojektes "Laptev See 2000" erstellt. Die dargestellten bodenkundlichen und mikro-biologischen Untersuchungen verfolgten das Ziel die mikrobielle Lebensgemeinschaft eines Permafrostbodens im sibirischen Lena Delta zu charakterisieren, wobei den methanogenen Archaea besondere Beachtung zukam. Die Probennahme wurde im August 2001 im zentralen Lenadelta, auf der Insel Samoylov durchgeführt. Das Delta liegt im Bereich des kontinuierlichen Permafrostes, was bedeutet, dass nur eine flache saisonale Auftauschicht während der Sommermonate auftaut. Das untersuchte Bodenprofil lag im Zentrum eines für die Landschaft repräsentativen Low Center Polygons. Zum Zeitpunkt der Beprobung betrug die Auftautiefe des untersuchten Bodens 45 cm.. Der Wasserstand lag zum Untersuchungszeitpunkt 18 cm unter der Geländeoberfläche, so dass alle tiefer liegenden Horizonte durch anaerobe Verhältnisse charakterisiert waren. Die Untersuchung der bodenkundlichen Parameter ergab unter anderem eine mit zunehmender Tiefe abnehmende Konzentration von Kohlenstoff und Stickstoff, sowie eine Abnahme von Temperatur und Wurzeldichte. Um die Auswirkungen der sich mit der Tiefe verändernden Bodeneigenschaften auf die Mikroorganismen zu ermitteln, wurden die Mikroorganismenpopulationen der verschiedenen Bodentiefen mit Hilfe der Fluoreszenz in situ Hybridisierung hinsichtlich ihrer Anzahl, Aktivität und Zusammensetzung beschrieben. Für die Charakterisierung des physiologischen Profils dieser Gemeinschaften, bezüglich der von ihr umsetzbaren Kohlenstoffverbindungen, wurden BIOLOG Mikrotiterplatten unter den in situ Bedingungen angepassten Bedingungen eingesetzt. Die sich im Profil verändernden Bodenparameter, vor allem die abnehmende Substratversorgung, die geringe Temperatur und die anaeroben Verhältnisse in den unteren Bodenschichten führten zu einer Veränderung der Mikroorganismenpopulation im Bodenprofil. So nahm von oben nach unten die Gesamtanzahl der ermittelten Mikroorganismen von 23,0 × 108 auf 1,2 × 108 Zellen g-1 ab. Gleichzeitig sank der Anteil der aktiven Zellen von 59% auf 33%. Das bedeutet, dass im Bereich von 0-5 cm 35mal mehr aktive Zellen g-1 als im Bereich von 40-45 cm gefunden wurden. Durch den Einsatz spezieller rRNS-Sonden konn-te zusätzlich eine Abnahme der Diversität mit zunehmender Bodentiefe nachgewiesen werden. Die geringere Aktivität der Population in den unteren Horizonten sowie die Unterschiede in der Zusammensetzung wirkten sich auf den Abbau der organischen Substanz aus. So wur-den die mit Hilfe der BIOLOG Mikrotiterplatten angebotenen Substanzen in größerer Tiefe langsamer und unvollständiger abgebaut. Insbesondere in den oberen 5 cm konnten einige der angebotenen Polymere und Kohlehydrate deutlich besser als im restlichen Profil umge-setzt werden. Das außerdem unter anaeroben Versuchsbedingungen diese Substrate deutlich schlechter umgesetzt wurden, kann so interpretiert werden, dass die konstant anaeroben Bedingungen in den unteren Horizonten ein Auftreten der Arten, die diese Substrate umset-zen, erschweren. Die in den oberen, aeroben Bodenabschnitten wesentlich höheren Zellzahlen und Aktivitäten und die dadurch schnellere C-Umsetzung führen auch zu einer besseren Substratversorgung der methanogenen Archaea in den makroskopisch aeroben Horizonten. Die erhöhte Substratverfügbarkeit erklärt die Tatsache, dass im Bereich von 0-5 cm die meisten methanogenen Archaea gefunden wurden, obwohl sich dieser Bereich zum Zeitpunkt der Probennahme oberhalb des wassergesättigten Bodenbereichs befand. Trotz der aeroben Bedingungen in, liegt im Bereich von 5 10 cm die für die methanogenen Archaea am besten geeignete Kombination aus Substratangebot und anaeroben Nischen vor. Hinzu kommt, dass in diesen Tiefen die Sommertemperaturen etwas höher liegen als in den tieferen Horizonten, was wiederum die Aktivität positiv beeinflusst. Bei zusammenfassender Betrachtung der Untersuchungsergebnisse von Anzahl, Aktivität, Zusammensetzung und Leistung der gesamten, aber im besonderen auch der methanogenen Mikroorganismenpopulation wird deutlich, dass in dem untersuchten Bodenprofil unter ökologischen Gesichtspunkten die oberen 15-20 cm den für den C-Umsatz relevantesten Bereich darstellen. Das Zusammenspiel wichtiger Bodenparameter wie Bodentemperatur, Wasserstand, Nährstoffversorgung und Durchwurzelung führt dazu, dass in dem untersuchten Tundraboden in den oberen 15-20 cm eine wesentlich größere und diversere Anzahl an Mikroorganismen existiert, die für einen schnelleren und umfassenderen Kohlenstoffumsatz in diesem Bereich des active layers sorgt. N2 - The soil characteristics and the bacterial community of the active layer (0-45 cm) of a permafrost affected tundra soil were analysed. The composition of the bacterial community was investigated by fluorescence in situ hybridisation (FISH) while BIOLOG Ecoplates were used to characterize microbial communities by determining the ability of the communities to oxidize various carbon sources. Arctic tundra soils contain large amounts of organic carbon, accumulated in thick soil layers and are known as a major sink of atmospheric CO2. These soils are totally frozen throughout the year and only a thin active layer is unfrozen and shows biological activity during the short summer. To improve the understanding of how the carbon fluxes in the active layer are controlled, detailed analysis of composition, functionality and interaction of soil microorganisms was done. The FISH analyses of the active layer showed large variations in absolute cell numbers and in the composition of the active microbial community between the different horizons, which is caused by the different environmental conditions (e.g. soil temperature, amount of organic matter, aeration) in this vertically structured ecosystem. Results obtained by universal protein stain 5-(4,6-dichlorotriazin-2-yl)aminofluorescein (DTAF) showed an exponential decrease of total cell counts from the top to the bottom of the active layer (2.3 × 109 to 1.2 × 108 cells per g dry soil). By using FISH, up to 59% of the DTAF-detected cells could be detected in the surface horizon, and up to 84% of these FISH-detected cells could be affiliated to a known phylogenetic group. With increasing depth the amount of FISH-detectable cells decreased as well as the diversity of ascertained phylogenetic groups. The turnover of substrates offered on the BIOLOG Ecoplates was slower and less complete in the deeper soil horizons. Especially in the upper 5 cm the turnover of some of the polymeric substances and some carbohydrates was much better than in deeper parts of the soil. The interaction of important soil parameters (water table, nutrient availability, roots) leads to a larger and more diverse community in the upper 20 cm of the soil, which again cause a faster and more complete turnover in this part of the active layer. KW - Mikrobiologie KW - Angewandte Mikrobiologie KW - Bodenmikrobiologie KW - Methanemission KW - Dauerfrostboden KW - Sibirien KW - Fluoreszenz-in-situ-Hybridisierung KW - Len KW - Microbiology KW - Soil KW - methane KW - Siberia Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-5467 ER - TY - THES A1 - Schulte, Luise T1 - Dynamics of Larix (Mill.) species in Siberia during the last 50,000 years inferred from sedimentary ancient DNA T1 - Die Dynamik sibirischer Lärchenarten (Larix Mill.) während der der letzten 50.000 Jahre, untersucht mittels sedimentärer alter DNA N2 - The deciduous needle tree larch (Larix Mill.) covers more than 80% of the Asian boreal forests. Only a few Larix species constitute the vast forests and these species differ markedly in their ecological traits, most importantly in their ability to grow on and stabilize underlying permafrost. The pronounced dominance of the summergreen larches makes the Asian boreal forests unique, as the rest of the northern hemisphere boreal forests is almost exclusively dominated by evergreen needle-leaf forests. Global warming is impacting the whole world but is especially pronounced in the arctic and boreal regions. Although adapted to extreme climatic conditions, larch forests are sensitive to varying climatic conditions. By their sheer size, changes in Asian larch forests as range shifts or changes in species composition and the resulting vegetation-climate feedbacks are of global relevance. It is however still uncertain if larch forests will persist under the ongoing warming climate or if they will be replaced by evergreen forests. It is therefore of great importance to understand how these ecosystems will react to future climate warmings and if they will maintain their dominance. One step in the better understanding of larch dynamics is to study how the vast dominant forests developed and why they only established in northern Asia. A second step is to study how the species reacted to past changes in the climate. The first objective of this thesis was to review and identify factors promoting Asian larch dominance. I achieved this by synthesizing and comparing reported larch occurrences and influencing components on the northern hemisphere continents in the present and in the past. The second objective was to find a possibility to directly study past Larix populations in Siberia and specifically their genetic variation, enabling the study of geographic movements. For this, I established chloroplast enrichment by hybridization capture from sedimentary ancient DNA (sedaDNA) isolated from lake sediment records. The third objective was to use the established method to track past larch populations, their glacial refugia during the Last Glacial Maximum (LGM) around 21,000 years before present (ka BP), and their post-glacial migration patterns. To study larch promoting factors, I compared the present state of larch species ranges, areas of dominance, their bioclimatic niches, and the distribution on different extents and thaw depths of permafrost. The species comparison showed that the bioclimatic niches greatly overlap between the American and Asian species and that it is only in the extremely continental climates in which only the Asian larch species can persist. I revealed that the area of dominance is strongly connected to permafrost extent but less linked to permafrost seasonal thaw depths. Comparisons of the paleorecord of larch between the continents suggest differences in the recolonization history. Outside of northern Asia and Alaska, glacial refugial populations of larch were confined to the southern regions and thus recolonization could only occur as migration from south to north. Alaskan larch populations could not establish wide-range dominant forest which could be related to their own genetically depletion as separated refugial population. In Asia, it is still unclear whether or not the northern refugial populations contributed and enhanced the postglacial colonization or whether they were replaced by populations invading from the south in the course of climate warming. Asian larch dominance is thus promoted partly by adaptions to extremely continental climates and by adaptations to grow on continuous permafrost but could be also connected to differences in glacial survival and recolonization history of Larix species. Except for extremely rare macrofossil findings of fossilized cones, traditional methods to study past vegetation are not able to distinguish between larch species or populations. Within the scope of this thesis, I therefore established a method to retrieve genetic information of past larch populations to distinguish between species. Using the Larix chloroplast genome as target, I successfully applied the method of DNA target enrichment by hybridization capture on sedaDNA samples from lake records and showed that it is able to distinguish between larch species. I then used the method on samples from lake records from across Siberia dating back up to 50 ka BP. The results allowed me to address the question of glacial survival and post-glacial recolonization mode in Siberian larch species. The analyzed pattern showed that LGM refugia were almost exclusively constituted by L. gmelinii, even in sites of current L. sibirica distribution. For included study sites, L. sibirica migrated into its extant northern distribution area only in the Holocene. Consequently, the post-glacial recolonization of L. sibirica was not enhanced by northern glacial refugia. In case of sites in extant distribution area of L. gmelinii, the absence of a genetic turn-over point to a continuous population rather than an invasion of southern refugia. The results suggest that climate has a strong influence on the distribution of Larix species and that species may also respond differently to future climate warming. Because species differ in their ecological characteristics, species distribution is also relevant with respect to further feedbacks between vegetation and climate. With this thesis, I give an overview of present and past larch occurrences and evaluate which factors promote their dominance. Furthermore, I provide the tools to study past Larix species and give first important insights into the glacial history of Larix populations. N2 - Der sommergrüne Nadelbaum Lärche (Larix Mill.) bedeckt mehr als 80 % der Fläche der borealen Wälder Asiens. Nur wenige Lärchenarten bilden ausgedehnte Wälder und diese Arten unterscheiden sich deutlich in ihren ökologischen Eigenschaften, vor allem in ihrer Fähigkeit, auf Permafrost zu wachsen und diesen zu stabilisieren. Die ausgeprägte Dominanz der sommergrünen Lärchen macht die asiatischen borealen Wälder einzigartig, da der Rest der borealen Wälder der Nordhalbkugel fast ausschließlich von immergrünen Nadelwäldern dominiert wird. Die Klimaerwärmung wirkt sich auf die ganze Welt aus, ist aber in den arktischen und borealen Regionen besonders ausgeprägt. Obwohl die Lärchenwälder an extreme klimatische Bedingungen angepasst sind, reagieren sie empfindlich auf klimatische Schwankungen. Aufgrund ihrer schieren Größe sind Veränderungen in asiatischen Lärchenwäldern, wie z. B. Verschiebungen des Verbreitungsgebiets oder Veränderungen in der Artenzusammensetzung und die daraus resultierenden Rückkopplungen zwischen Vegetation und Klima, von globaler Bedeutung. Es ist jedoch noch ungewiss, ob die Lärchenwälder unter der fortschreitenden Klimaerwärmung bestehen bleiben oder durch immergrüne Wälder ersetzt werden. Es ist daher von großer Bedeutung zu verstehen, wie diese Ökosysteme auf die künftige Klimaerwärmung reagieren werden und ob sie ihre Dominanz behalten werden. Ein Schritt zum besseren Verständnis der Lärchendynamik besteht darin, zu untersuchen, wie die riesigen dominanten Wälder von heute entstanden sind und warum sie sich nur in Nordasien etabliert haben. In einem zweiten Schritt soll untersucht werden, wie die Art auf vergangene Klimaveränderungen reagiert hat. Das erste Ziel dieser Arbeit bestand darin, die Faktoren zu ermitteln, die die Dominanz der asiatischen Lärche begünstigen. Dies erreichte ich, indem ich die dokumentierten Lärchenvorkommen und die sie beeinflussenden Komponenten auf den Kontinenten der nördlichen Hemisphäre in der Gegenwart und in der Vergangenheit gesammelt und verglichen habe. Das zweite Ziel bestand darin, eine Möglichkeit zu finden, frühere Lärchenpopulationen in Sibirien und insbesondere ihre genetische Variation direkt zu studieren, um geografische Bewegungen untersuchen zu können. Dafür etablierte ich die Methode der Anreicherung von Chloroplasten durch Hybridisierung von alter sedimentärer DNA (sedaDNA) isoliert aus Seesedimenten. Das dritte Ziel bestand darin, die etablierte Methode zu nutzen, um vergangene Lärchenpopulationen, ihre eiszeitlichen Refugien während des letzten glazialen Maximums (LGM) um ca. 21.000 Jahre vor der Gegenwart (ka BP) und ihre nacheiszeitlichen Migrationsmuster zu verfolgen. Um die Faktoren zu untersuchen, die die Ausbreitung der Lärche begünstigen, verglich ich den gegenwärtigen Stand der Verbreitungsgebiete der Lärchenarten, die Gebiete, in denen sie vorherrschen, ihre bioklimatischen Nischen und die Verteilung auf verschiedene Ausdehnungen und Auftautiefen des Permafrosts. Der Artenvergleich zeigte, dass sich die bioklimatischen Nischen der amerikanischen und asiatischen Arten stark überschneiden und dass nur in den extrem kontinentalen Klimazonen ausschließlich die asiatischen Lärchenarten überleben können. Es zeigte sich, dass das Verbreitungsgebiet stark mit der Permafrostausdehnung zusammenhängt, aber weniger mit der saisonalen Auftautiefe des Permafrosts. Der Vergleich vergangener Lärchenvorkommen zwischen den Kontinenten deutet auf Unterschiede in der Rekolonisationsgeschichte hin. Außerhalb Nordasiens und Alaskas waren die eiszeitlichen Lärchenpopulationen auf die südlichen Regionen beschränkt, so dass die Wiederbesiedlung nur als Wanderung von Süden nach Norden erfolgen konnte. Die Lärchenpopulationen in Alaska konnten keinen weiträumig dominanten Wald etablieren, was mit ihrer eigenen genetischen Verarmung als abgeschiedene Refugialpopulation zusammenhängen könnte. In Asien ist noch unklar, ob die nördlichen Refugialpopulationen zur nacheiszeitlichen Besiedlung beigetragen und diese verstärkt haben oder ob sie im Zuge der Klimaerwärmung durch von Süden eindringende Populationen ersetzt wurden. Die Dominanz der asiatischen Lärche wird also zum Teil durch Anpassungen an das extrem kontinentale Klima und durch Anpassungen an das Wachstum auf kontinuierlichem Permafrost begünstigt, könnte aber auch mit Unterschieden in der glazialen Überlebens- und Rekolonisationsgeschichte der Larix-Arten zusammenhängen. Abgesehen von den äußerst seltenen Makrofossilienfunden versteinerter Zapfen sind die herkömmlichen Methoden zur Untersuchung der vergangenen Vegetation nicht in der Lage, zwischen Lärchenarten oder -populationen zu unterscheiden. Im Rahmen dieser Arbeit habe ich daher eine Methode zur Gewinnung genetischer Informationen früherer Lärchenpopulationen entwickelt, um zwischen den Arten zu unterscheiden. Unter Verwendung des Larix-Chloroplastengenoms habe ich die Methode der DNA-Anreicherung durch Hybridisierung erfolgreich auf sedaDNA-Proben aus See-sedimentbohrkernen angewandt und gezeigt, dass die Methode erlaubt zwischen Lärchenarten zu unterscheiden. Anschließend wendete ich die Methode auf Proben aus Seen in ganz Sibirien an, die bis zu 50 ka BP zurückreichen. Anhand der Ergebnisse konnte ich zur Beantwortung der Frage beitragen, welche sibirische Lärchenarten während des LGM überlebten und wie die postglaziale Wiederbesiedlung stattfand. Das analysierte Muster zeigte, dass die LGM-Refugien fast ausschließlich von L. gmelinii gebildet wurden, selbst an Orten, an denen heute L. sibirica verbreitet ist. In den untersuchten Gebieten ist L. sibirica erst im Holozän in ihr heutiges nördliches Verbreitungsgebiet eingewandert. Folglich wurde die nacheiszeitliche Wiederbesiedlung von L. sibirica nicht durch nördliche eiszeitliche Refugien gefördert. Im Falle der Standorte im heutigen Verbreitungsgebiet von L. gmelinii deutet das Fehlen eines Wechsels genetischer Variation eher auf eine kontinuierliche Population als auf eine Invasion aus südlichen Refugien hin. Die Ergebnisse deuten darauf hin, dass das Klima einen starken Einfluss auf die Verbreitung von Larix-Arten hat und die Arten auch auf zukünftige Klimaerwärmung unterschiedlich reagieren könnten. Da die Arten sich in ihren ökologischen Eigenschaften unterscheiden, ist eine Änderung in der Verbreitung der Arten auch im Hinblick auf weitere Rückkopplungen zwischen Vegetation und Klima relevant. In dieser Arbeit gebe ich einen Überblick über die heutigen und früheren Lärchenvorkommen und bewerte, welche Faktoren ihre Dominanz begünstigen. Darüber hinaus stelle ich eine Methode zur Untersuchung vergangener Lärchenarten bereit und gebe erste wichtige Einblicke in ihre glaziale Geschichte. KW - ancient DNA KW - ancient sedimentary DNA KW - Larix KW - larch KW - glacial refugia KW - postglacial recolonization KW - phylogeography KW - hybridization capture KW - target enrichment KW - shotgun sequencing KW - chloroplast KW - Siberia KW - Larix KW - Sibirien KW - alte DNA KW - alte sedimentäre DNA KW - Chloroplast KW - glaziale Refugien KW - Lärche KW - Phylogeographie KW - nacheiszeitliche Wiederbesiedlung KW - Shotgun Sequenzierung Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-558782 ER - TY - THES A1 - Courtin, Jérémy T1 - Biodiversity changes in Siberia between quaternary glacial and interglacial stages T1 - Veränderungen der Biodiversität in Sibirien zwischen Quartären Glazial- und Interglazialphasen BT - exploring the potential of sedaDNA BT - das Potenzial von sedaDNA erforschen N2 - Der vom Menschen verursachte Klimawandel wirkt sich auf die biologische Vielfalt der Erde und damit auf die Ökosysteme und ihre Leistungen aus. Die Ökosysteme in den hohen Breitengraden sind aufgrund der verstärkten Erwärmung an den Polen noch stärker betroffen als der Rest der nördlichen Hemisphäre. Dennoch ist es schwierig, die Dynamik von Ökosystemen in den hohen Breitengraden vorherzusagen, da die Wechselwirkungen zwischen abiotischen und biotischen Komponenten sehr komplex sind. Da die Vergangenheit der Schlüssel zur Zukunft ist, ist die Interpretation vergangener ökologischer Veränderungen möglich, um laufende Prozesse besser zu verstehen. Im Quartär durchlief das Pleistozän mehrere glaziale und interglaziale Phasen, welche die Ökosysteme der Vergangenheit beeinflussten. Während des letzten Glazials bedeckte die pleistozäne Steppentundra den größten Teil der unvergletscherten nördlichen Hemisphäre und verschwand parallel zum Aussterben der Megafauna am Übergang zum Holozän (vor etwa 11 700 Jahren). Der Ursprung des Rückgangs der Steppentundra ist nicht gut erforscht, und die Kenntnis über die Mechanismen, die zu den Veränderungen in den vergangenen Lebensgemeinschaften und Ökosystemen geführt haben, ist von hoher Priorität, da sie wahrscheinlich mit denen vergleichbar sind, die sich auf moderne Ökosysteme auswirken. Durch die Entnahme von See- oder Permafrostkernsedimenten kann die vergangene Artenvielfalt an den Übergängen zwischen Eis- und Zwischeneiszeiten untersucht werden. Sibirien und Beringia waren der Ursprung der Ausbreitung der Steppentundra, weshalb die Untersuchung dieses Gebiets hohe Priorität hat. Bis vor kurzem waren Makrofossilien und Pollen die gängigsten Methoden. Sie dienen der Rekonstruktion vergangener Veränderungen in der Zusammensetzung der Bevölkerung, haben aber ihre Grenzen und Schwächen. Seit Ende des 20. Jahrhunderts kann auch sedimentäre alte DNA (sedaDNA) untersucht werden. Mein Hauptziel war es, durch den Einsatz von sedaDNA-Ansätzen wissenschaftliche Beweise für Veränderungen in der Zusammensetzung und Vielfalt der Ökosysteme der nördlichen Hemisphäre am Übergang zwischen den quartären Eiszeiten und Zwischeneiszeiten zu liefern. In dieser Arbeit liefere ich Momentaufnahmen ganzer alter Ökosysteme und beschreibe die Veränderungen in der Zusammensetzung zwischen Quartärglazialen und Interglazialen und bestätige die Vegetationszusammensetzung sowie die räumlichen und zeitlichen Grenzen der pleistozänen Steppentundra. Ich stelle einen allgemeinen Verlust der Pflanzenvielfalt fest, wobei das Aussterben der Pflanzen parallel zum Aussterben der Megafauna verlief. Ich zeige auf, wie der Verlust der biotischen Widerstandsfähigkeit zum Zusammenbruch eines zuvor gut etablierten Systems führte, und diskutiere meine Ergebnisse im Hinblick auf den laufenden Klimawandel. Mit weiteren Arbeiten zur Eingrenzung von Verzerrungen und Grenzen kann sedaDNA parallel zu den etablierteren Makrofossilien- und Pollenansätzen verwendet werden oder diese sogar ersetzen, da meine Ergebnisse die Robustheit und das Potenzial von sedaDNA zur Beantwortung neuer paläoökologischer Fragen wie Veränderungen der Pflanzenvielfalt und -verluste belegen und Momentaufnahmen ganzer alter Biota liefern. N2 - Climate change of anthropogenic origin is affecting Earth’s biodiversity and therefore ecosystems and their services. High latitude ecosystems are even more impacted than the rest of Northern Hemisphere because of the amplified polar warming. Still, it is challenging to predict the dynamics of high latitude ecosystems because of complex interaction between abiotic and biotic components. As the past is the key to the future, the interpretation of past ecological changes to better understand ongoing processes is possible. In the Quaternary, the Pleistocene experienced several glacial and interglacial stages that affected past ecosystems. During the last Glacial, the Pleistocene steppe-tundra was covering most of unglaciated northern hemisphere and disappeared in parallel to the megafauna’s extinction at the transition to the Holocene (~11,700 years ago). The origin of the steppe-tundra decline is not well understood and knowledge on the mechanisms, which caused shifts in past communities and ecosystems, is of high priority as they are likely comparable to those affecting modern ecosystems. Lake or permafrost core sediments can be retrieved to investigate past biodiversity at transitions between glacial and interglacial stages. Siberia and Beringia were the origin of dispersal of the steppe-tundra, which make investigation this area of high priority. Until recently, macrofossils and pollen were the most common approaches. They are designed to reconstruct past composition changes but have limit and biases. Since the end of the 20th century, sedimentary ancient DNA (sedaDNA) can also be investigated. My main objectives were, by using sedaDNA approaches to provide scientific evidence of compositional and diversity changes in the Northern Hemisphere ecosystems at the transition between Quaternary glacial and interglacial stages. In this thesis, I provide snapshots of entire ancient ecosystems and describe compositional changes between Quaternary glacial and interglacial stages, and confirm the vegetation composition and the spatial and temporal boundaries of the Pleistocene steppe-tundra. I identify a general loss of plant diversity with extinction events happening in parallel of megafauna’ extinction. I demonstrate how loss of biotic resilience led to the collapse of a previously well-established system and discuss my results in regards to the ongoing climate change. With further work to constrain biases and limits, sedaDNA can be used in parallel or even replace the more established macrofossils and pollen approaches as my results support the robustness and potential of sedaDNA to answer new palaeoecological questions such as plant diversity changes, loss and provide snapshots of entire ancient biota. KW - sedaDNA KW - pleistocene KW - paleoecology KW - climate change KW - holocene KW - Siberia KW - sedaDNA KW - Pleistozän KW - Paläoökologie KW - Holozän KW - Klimawandel KW - Sibirien Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-595847 ER -