TY - JOUR A1 - Bolius, Sarah A1 - Wiedner, Claudia A1 - Weithoff, Guntram T1 - High local trait variability in a globally invasive cyanobacterium JF - Freshwater biology N2 - 1. During the last couple of decades, invasive species have become a worldwide problem in many freshwater systems. Besides higher plants and animals, microbes, in particular the potentially toxic cyanobacterium Cylindrospermopsis raciborskii, has attracted increasing attention, due to its spread towards temperate zones of the northern and southern hemisphere. A number of advantageous functional traits and a high intraspecific plasticity have been suggested to explain its invasion success. 2. The aim of this study was to examine intraspecific functional trait variability in 12 different isolates of C.raciborskii originating from different lakes in an invaded region in Northeast Germany. We measured growth rate, C:N:P ratios, chlorophyll-a content and the abundance of heterocysts under nutrient-replete and phosphorus-limited conditions. Moreover, the isolate-specific morphology and grazing losses by an herbivorous rotifer, as a top-down force, were studied. 3. DNA fingerprinting revealed that all isolates were genetically different. C.raciborskii exhibited a large variability in all measured traits among isolates. The C:P, N:P and Chl-a:C ratios differed by a factor of two or more. The trait variability among isolates was higher under nutrient-replete conditions, except for the C:P ratio, which varied most during phosphorus limitation. The susceptibility to grazing, calculated as maximum ingestion rates of the rotifer Brachionus calyciflorus on C.raciborskii, varied most among isolates, but was not related to any of the measured physiological or morphological traits, i.e. no trade-off was found. 4. Ecological and genetic clustering did not match, indicating that the genetic relationship based on DNA fingerprinting did not cover ecological differences. 5. Our results show a high trait variability within locally occurring and partly co-occurring C.raciborskii isolates. No overall trade-offs between the measured functional traits were found. This demonstrates the ecological relevance of linking multiple traits, e.g. competitive and consumptive. Furthermore, this study emphasises the importance of analysing more than one strain of a species, as different strains show different trait values potentially relevant for their invasibility and the field of general trait-based ecology. KW - Cylindrospermopsis raciborskii KW - functional traits KW - genotypes KW - invasion KW - stoichiometry Y1 - 2017 U6 - https://doi.org/10.1111/fwb.13028 SN - 0046-5070 SN - 1365-2427 VL - 62 SP - 1879 EP - 1890 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Solger, Franziska A1 - Kunz, Tobias C. A1 - Fink, Julian A1 - Paprotka, Kerstin A1 - Pfister, Pauline A1 - Hagen, Franziska A1 - Schumacher, Fabian A1 - Kleuser, Burkhard A1 - Seibel, Jürgen A1 - Rudel, Thomas T1 - A role of sphingosine in the intracellular survival of Neisseria gonorrhoeae JF - Frontiers in Cellular and Infection Microbiology N2 - Obligate human pathogenic Neisseria gonorrhoeae are the second most frequent bacterial cause of sexually transmitted diseases. These bacteria invade different mucosal tissues and occasionally disseminate into the bloodstream. Invasion into epithelial cells requires the activation of host cell receptors by the formation of ceramide-rich platforms. Here, we investigated the role of sphingosine in the invasion and intracellular survival of gonococci. Sphingosine exhibited an anti-gonococcal activity in vitro. We used specific sphingosine analogs and click chemistry to visualize sphingosine in infected cells. Sphingosine localized to the membrane of intracellular gonococci. Inhibitor studies and the application of a sphingosine derivative indicated that increased sphingosine levels reduced the intracellular survival of gonococci. We demonstrate here, that sphingosine can target intracellular bacteria and may therefore exert a direct bactericidal effect inside cells. KW - Neisseria gonorrhoeae KW - sphingosine KW - sphingolipids KW - sphingosine kinases KW - invasion KW - survival KW - click chemistry Y1 - 2020 U6 - https://doi.org/10.3389/fcimb.2020.00215 SN - 2235-2988 VL - 10 PB - Frontiers Media CY - Lausanne ER -