TY - THES A1 - Morgenstern, Anne T1 - Thermokarst and thermal erosion : degradation of Siberian ice-rich permafrost T1 - Thermokarst und Thermoerosion : Degradation von sibirischem eisreichem Permafrost N2 - Current climate warming is affecting arctic regions at a faster rate than the rest of the world. This has profound effects on permafrost that underlies most of the arctic land area. Permafrost thawing can lead to the liberation of considerable amounts of greenhouse gases as well as to significant changes in the geomorphology, hydrology, and ecology of the corresponding landscapes, which may in turn act as a positive feedback to the climate system. Vast areas of the east Siberian lowlands, which are underlain by permafrost of the Yedoma-type Ice Complex, are particularly sensitive to climate warming because of the high ice content of these permafrost deposits. Thermokarst and thermal erosion are two major types of permafrost degradation in periglacial landscapes. The associated landforms are prominent indicators of climate-induced environmental variations on the regional scale. Thermokarst lakes and basins (alasses) as well as thermo-erosional valleys are widely distributed in the coastal lowlands adjacent to the Laptev Sea. This thesis investigates the spatial distribution and morphometric properties of these degradational features to reconstruct their evolutionary conditions during the Holocene and to deduce information on the potential impact of future permafrost degradation under the projected climate warming. The methodological approach is a combination of remote sensing, geoinformation, and field investigations, which integrates analyses on local to regional spatial scales. Thermokarst and thermal erosion have affected the study region to a great extent. In the Ice Complex area of the Lena River Delta, thermokarst basins cover a much larger area than do present thermokarst lakes on Yedoma uplands (20.0 and 2.2 %, respectively), which indicates that the conditions for large-area thermokarst development were more suitable in the past. This is supported by the reconstruction of the development of an individual alas in the Lena River Delta, which reveals a prolonged phase of high thermokarst activity since the Pleistocene/Holocene transition that created a large and deep basin. After the drainage of the primary thermokarst lake during the mid-Holocene, permafrost aggradation and degradation have occurred in parallel and in shorter alternating stages within the alas, resulting in a complex thermokarst landscape. Though more dynamic than during the first phase, late Holocene thermokarst activity in the alas was not capable of degrading large portions of Pleistocene Ice Complex deposits and substantially altering the Yedoma relief. Further thermokarst development in existing alasses is restricted to thin layers of Holocene ice-rich alas sediments, because the Ice Complex deposits underneath the large primary thermokarst lakes have thawed completely and the underlying deposits are ice-poor fluvial sands. Thermokarst processes on undisturbed Yedoma uplands have the highest impact on the alteration of Ice Complex deposits, but will be limited to smaller areal extents in the future because of the reduced availability of large undisturbed upland surfaces with poor drainage. On Kurungnakh Island in the central Lena River Delta, the area of Yedoma uplands available for future thermokarst development amounts to only 33.7 %. The increasing proximity of newly developing thermokarst lakes on Yedoma uplands to existing degradational features and other topographic lows decreases the possibility for thermokarst lakes to reach large sizes before drainage occurs. Drainage of thermokarst lakes due to thermal erosion is common in the study region, but thermo-erosional valleys also provide water to thermokarst lakes and alasses. Besides these direct hydrological interactions between thermokarst and thermal erosion on the local scale, an interdependence between both processes exists on the regional scale. A regional analysis of extensive networks of thermo-erosional valleys in three lowland regions of the Laptev Sea with a total study area of 5,800 km² found that these features are more common in areas with higher slopes and relief gradients, whereas thermokarst development is more pronounced in flat lowlands with lower relief gradients. The combined results of this thesis highlight the need for comprehensive analyses of both, thermokarst and thermal erosion, in order to assess past and future impacts and feedbacks of the degradation of ice-rich permafrost on hydrology and climate of a certain region. N2 - Die gegenwärtige Klimaerwärmung wirkt sich auf arktische Regionen stärker aus als auf andere Gebiete der Erde. Das hat weitreichende Konsequenzen für Permafrost, der weite Teile der terrestrischen Arktis unterlagert. Das Tauen von Permafrost kann zur Freisetzung erheblicher Mengen an Treibhausgasen sowie zu gravierenden Änderungen in der Geomorphologie, Hydrologie und Ökologie betroffener Landschaften führen, was wiederum als positive Rückkopplung auf das Klimasystem wirken kann. Ausgedehnte Gebiete der ostsibirischen Tiefländer, die mit Permafrost des Yedoma Eiskomplex unterlagert sind, gelten aufgrund des hohen Eisgehalts dieser Permafrostablagerungen als besonders empfindlich gegenüber Klimaerwärmungen. Thermokarst und Thermoerosion sind zwei Hauptformen der Permafrostdegradation in periglazialen Landschaften. Die zugehörigen Landschaftsformen sind auf der regionalen Skala bedeutende Indikatoren klimainduzierter Umweltvariationen. Thermokarstseen und senken (Alasse) sowie Thermoerosionstäler sind in den Küstentiefländern der Laptewsee weit verbreitet. Die vorliegende Dissertation untersucht die räumliche Verbreitung und die morphometrischen Eigenschaften dieser Degradationsformen mit dem Ziel, ihre Entwicklungsbedingungen während des Holozäns zu rekonstruieren und Hinweise auf potenzielle Auswirkungen zukünftiger Permafrostdegradation im Zuge der erwarteten Klimaerwärmung abzuleiten. Der methodische Ansatz ist eine Kombination aus Fernerkundungs-, Geoinformations- und Geländeuntersuchungen, die Analysen auf lokalen bis regionalen räumlichen Skalen integriert. Thermokarst und Thermoerosion haben die Untersuchungsregion tiefgreifend geprägt. Im Eiskomplexgebiet des Lena-Deltas nehmen Thermokarstsenken eine weitaus größere Fläche ein als Thermokarstseen auf Yedoma-Hochflächen (20,0 bzw. 2,2 %), was darauf hin deutet, dass die Bedingungen für die Entwicklung von großflächigem Thermokarst in der Vergangenheit wesentlich günstiger waren als heute. Die Rekonstruktion der Entwicklung eines einzelnen Alas im Lena-Delta belegt eine andauernde Phase hoher Thermokarstaktivität seit dem Übergang vom Pleistozän zum Holozän, die zur Entstehung einer großen und tiefen Senke führte. Nach der Drainage des primären Thermokarstsees im mittleren Holozän erfolgten Permafrostaggradation und degradation parallel und in kürzeren abwechselnden Etappen innerhalb des Alas und führten zu einer komplexen Thermokarstlandschaft. Trotzdem die spätholozäne Thermokarstentwicklung im Alas dynamischer ablief als die erste Entwicklungsphase, resultierte sie nicht in der Degradation großer Teile pleistozäner Eiskomplexablagerungen und einer wesentlichen Veränderung des Yedoma-Reliefs. Weitere Thermokarstentwicklung in bestehenden Alassen ist begrenzt auf geringmächtige Lagen holozäner eisreicher Alas-Sedimente, da die Eiskomplexablagerungen unter den großen primären Thermokarstseen vollständig getaut waren und die unterlagernden Sedimente aus eisarmen, fluvialen Sanden bestehen. Thermokarstprozesse auf ungestörten Yedoma-Hochflächen wirken am stärksten verändernd auf Eiskomplexablagerungen, werden aber in Zukunft auf geringere Ausmaße begrenzt sein, da die Verfügbarkeit großer ungestörter, schwach drainierter Yedoma-Hochflächen abnimmt. Auf der Insel Kurungnakh im zentralen Lena-Delta beträgt der für zukünftige Thermokarstentwicklung verfügbare Anteil an Yedoma-Hochflächen nur 33,7 %. Die zunehmende Nähe von sich entwickelnden Thermokarstseen auf Yedoma-Hochflächen zu bestehenden Degradationsstrukturen und anderen negativen Reliefformen verringert die Möglichkeit der Thermokarstseen, große Ausmaße zu erreichen bevor sie drainieren. Die Drainage von Thermokarstseen durch Thermoerosion ist in der Untersuchungsregion weit verbreitet, aber Thermoerosionstäler versorgen Thermokarstseen und –senken auch mit Wasser. Neben diesen direkten hydrologischen Wechselwirkungen zwischen Thermokarst und Thermoerosion auf der lokalen Ebene existiert auch eine Interdependenz zwischen beiden Prozessen auf der regionalen Ebene. Eine regionale Analyse weitreichender Netze von Thermoerosionstälern in drei Tieflandgebieten der Laptewsee mit einer Fläche von insgesamt 5800 km² zeigte, dass diese Formen häufiger in Gebieten mit höheren Geländeneigungen und Reliefgradienten auftreten, während Thermokarstentwicklung stärker in flachen Tiefländern mit geringeren Reliefgradienten ausgeprägt ist. Die kombinierten Ergebnisse dieser Dissertation zeigen die Notwendigkeit von umfassenden Analysen beider Prozesse und Landschaftsformen, Thermokarst und Thermoerosion, im Hinblick auf die Abschätzung vergangener und zukünftiger Auswirkungen der Degradation eisreichen Permafrosts auf Hydrologie und Klima der betrachteten Region und deren Rückkopplungen. KW - Fernerkundung KW - GIS KW - räumliche Analyse KW - periglaziale Landschaften KW - Arktis KW - remote sensing KW - GIS KW - spatial analyses KW - periglacial landscapes KW - Arctic Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-62079 ER - TY - THES A1 - Bischoff, Juliane T1 - Microbial communities and their response to Pleistocene and Holocene climate variabilities in the Russian Arctic T1 - Mikrobielle Gemeinschaften und ihre Reaktion auf Klimaeveränderungen des Pleistozäns und Holozäns in der Russischen Arktis N2 - The Arctic is considered as a focal region in the ongoing climate change debate. The currently observed and predicted climate warming is particularly pronounced in the high northern latitudes. Rising temperatures in the Arctic cause progressive deepening and duration of permafrost thawing during the arctic summer, creating an ‘active layer’ with high bioavailability of nutrients and labile carbon for microbial consumption. The microbial mineralization of permafrost carbon creates large amounts of greenhouse gases, including carbon dioxide and methane, which can be released to the atmosphere, creating a positive feedback to global warming. However, to date, the microbial communities that drive the overall carbon cycle and specifically methane production in the Arctic are poorly constrained. To assess how these microbial communities will respond to the predicted climate changes, such as an increase in atmospheric and soil temperatures causing increased bioavailability of organic carbon, it is necessary to investigate the current status of this environment, but also how these microbial communities reacted to climate changes in the past. This PhD thesis investigated three records from two different study sites in the Russian Arctic, including permafrost, lake shore and lake deposits from Siberia and Chukotka. A combined stratigraphic approach of microbial and molecular organic geochemical techniques were used to identify and quantify characteristic microbial gene and lipid biomarkers. Based on this data it was possible to characterize and identify the climate response of microbial communities involved in past carbon cycling during the Middle Pleistocene and the Late Pleistocene to Holocene. It is shown that previous warmer periods were associated with an expansion of bacterial and archaeal communities throughout the Russian Arctic, similar to present day conditions. Different from this situation, past glacial and stadial periods experienced a substantial decrease in the abundance of Bacteria and Archaea. This trend can also be confirmed for the community of methanogenic archaea that were highly abundant and diverse during warm and particularly wet conditions. For the terrestrial permafrost, a direct effect of the temperature on the microbial communities is likely. In contrast, it is suggested that the temperature rise in scope of the glacial-interglacial climate variations led to an increase of the primary production in the Arctic lake setting, as can be seen in the corresponding biogenic silica distribution. The availability of this algae-derived carbon is suggested to be a driver for the observed pattern in the microbial abundance. This work demonstrates the effect of climate changes on the community composition of methanogenic archae. Methanosarcina-related species were abundant throughout the Russian Arctic and were able to adapt to changing environmental conditions. In contrast, members of Methanocellales and Methanomicrobiales were not able to adapt to past climate changes. This PhD thesis provides first evidence that past climatic warming led to an increased abundance of microbial communities in the Arctic, closely linked to the cycling of carbon and methane production. With the predicted climate warming, it may, therefore, be anticipated that extensive amounts of microbial communities will develop. Increasing temperatures in the Arctic will affect the temperature sensitive parts of the current microbiological communities, possibly leading to a suppression of cold adapted species and the prevalence of methanogenic archaea that tolerate or adapt to increasing temperatures. These changes in the composition of methanogenic archaea will likely increase the methane production potential of high latitude terrestrial regions, changing the Arctic from a carbon sink to a source. N2 - Die Arktis ist in den gegenwärtigen Diskussionen zum Klimawandel von besonderem Interesse. Die derzeitig beobachtete globale Erwärmung ist in den hohen nördlichen Breiten besonders ausgeprägt. Dies führt dazu, dass ehemals gefrorene Böden zunehmend tiefer auftauen und daher im Boden enthaltene Kohlenstoffquellen für die mikrobielle Umsetzung und Mineralisierung zur Verfügung stehen. Aufgrund dieser Prozesse entstehen klimarelevant Gase, darunter Kohlendioxid und Methan, die aus den Böden und Sedimenten freigesetzt werden können. Wenn man bedenkt, dass in den nördlichen Permafrostgebieten die Hälfte des weltweit unter der Bodenoberfläche gelagerten Kohlenstoffs gelagert ist, wird die Bedeutung dieser Region für das Verständnis des globalen Kohlenstoffkreislaufes und der möglichen Treibhaus-gasemissionen sichtbar. Trotz dieser Relevanz, sind die am Kohlenstoffumsatz beteiligten Mikroorganismen in der Arktis wenig untersucht und ihre Anpassungsfähigkeit an die gegenwärtigen Klimaveränderungen unbekannt. Die vorliegende Arbeit untersucht daher, wie sich Klimaveränderungen in der Vergangenheit auf die Anzahl und Zusammensetzung der mikrobiellen Gemeinschaften ausgewirkt haben. Dabei liegt ein besonderer Fokus auf die methanbildenden Archaeen, um das Verständnis der mikrobiellen Methandynamik zu vertiefen. Im Rahmen dieser Arbeit wurden drei Bohrkerne aus zwei verschiedenen Standorten in der russischen Arktis untersucht, darunter terrestrischer Permafrost und Seesedimente aus Sibirien und Chukotka, Russland. Mittels der Identifikation und Quantifizierung von mikrobiellen Genen und charakteristischen Bestandteilen der mikrobiellen Zellmembran war es möglich, fossile mikrobielle Gemeinschaften in Seesedimenten mit einem Alter von bis zu 480 000 Jahren und in Permafrostablagerungen mit einem Alter von bis zu 42 000 Jahren zu rekonstruieren. Es wurde gezeigt, dass es während vergangener warmen Perioden zu einem Wachstum von Bakterien und Archaeen in allen untersuchten Standorten gekommen ist. Dieser Trend konnte auch für die Gemeinschaft der methanogenen Archaeen gezeigt werden, die während warmen und insbesondere feuchten Klimabedingungen in großer Anzahl und Diversität vorhanden waren, was wiederrum Rückschlüsse auf mögliche Methanemissionen erlaubt. In den terrestrischen Permafroststandorten wird der Temperaturanstieg als direkte Ursache für die gefundene Reaktion der mikrobiellen Gemeinschaft vermutet. Im Gegenzug dazu, führte der Temperaturanstieg im untersuchten arktischen See wahrscheinlich zu einer erhöhten Primärproduktion von organischem Kohlenstoff, die wiederum das Wachstum der Mikroorganismen antrieb. Weiterhin konnte im Rahmen dieser Arbeit gezeigt werden, dass Methanosarcina-verwandte Spezies in der Russischen Arktis weit verbreitet sind und sich an veränderte Umweltbedingungen gut anpassen können. Im Gegensatz dazu stehen Vertreter von Methanocellales und Methano-microbiales, die nicht in der Lage sich an veränderte Lebensbedingungen anzupassen. Im Rahmen dieser Arbeit konnte erstmalig gezeigt werden, dass es in früheren Warmphasen zu einem vermehrten Wachstum der an der Umsetzung des organischen Kohlenstoffs beteiligten Mikroorganismen in der Russischen Arktis gekommen ist. Im Zusammenhang mit der zukünftigen Erwärmung der Arktis kann also von einer Veränderung der am Kohlenstoffkreislauf beteiligten Mikroorganismen ausgegangen werden kann. Mit den steigenden Temperaturen werden sich einige Vertreter der methanproduzierenden Mikroorganismen an die veränderten Bedingungen anpassen können, während Temperatur-empfindliche Vertreter aus dem Habitat verdrängt werden. Diese Veränderungen in der mikrobiellen Gemeinschaft können die Methanproduktion der hohen noerdlichen Breiten erhoehen und dazu beitragen, dass aus der Arktis als eine Kohlenstoffsenke eine Kohlenstoffquelle wird. KW - Arctic KW - climate change KW - microbial communities KW - lipid biomarkers Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-68895 ER - TY - THES A1 - Mogrovejo Arias, Diana Carolina T1 - Assessment of the frequency and relevance of potentially pathogenic phenotypes in microbial isolates from Arctic environments N2 - The Arctic environments constitute rich and dynamic ecosystems, dominated by microorganisms extremely well adapted to survive and function under severe conditions. A range of physiological adaptations allow the microbiota in these habitats to withstand low temperatures, low water and nutrient availability, high levels of UV radiation, etc. In addition, other adaptations of clear competitive nature are directed at not only surviving but thriving in these environments, by disrupting the metabolism of neighboring cells and affecting intermicrobial communication. Since Arctic microbes are bioindicators which amplify climate alterations in the environment, the Arctic region presents the opportunity to study local microbiota and carry out research about interesting, potentially virulent phenotypes that could be dispersed into other habitats around the globe as a consequence of accelerating climate change. In this context, exploration of Arctic habitats as well as descriptions of the microbes inhabiting them are abundant but microbial competitive strategies commonly associated with virulence and pathogens are rarely reported. In this project, environmental samples from the Arctic region were collected and microorganisms (bacteria and fungi) were isolated. The clinical relevance of these microorganisms was assessed by observing the following virulence markers: ability to grow at a range of temperatures, expression of antimicrobial resistance and production of hemolysins. The aim of this project is to determine the frequency and relevance of these characteristics in an effort to understand microbial adaptations in habitats threatened by climate change. The isolates obtained and described here were able to grow at a range of temperatures, in some cases more than 30 °C higher than their original isolation temperature. A considerable number of them consistently expressed compounds capable of lysing sheep and bovine erythrocytes on blood agar at different incubation temperatures. Ethanolic extracts of these bacteria were able to cause rapid and complete lysis of erythrocyte suspensions and might even be hemolytic when assayed on human blood. In silico analyses showed a variety of resistance elements, some of them novel, against natural and synthetic antimicrobial compounds. In vitro experiments against a number of antimicrobial compounds showed resistance phenotypes belonging to wild-type populations and some non-wild type which clearly denote human influence in the acquisition of antimicrobial resistance. The results of this project demonstrate the presence of virulence-associated factors expressed by microorganisms of natural, non-clinical environments. This study contains some of the first reports, to the best of our knowledge, of hemolytic microbes isolated from the Arctic region. In addition, it provides additional information about the presence and expression of intrinsic and acquired antimicrobial resistance in environmental isolates, contributing to the understanding of the evolution of relevant pathogenic species and opportunistic pathogens. Finally, this study highlights some of the potential risks associated with changes in the polar regions (habitat melting and destruction, ecosystem transition and re-colonization) as important indirect consequences of global warming and altered climatic conditions around the planet. N2 - Die Arktis ist ein reiches und dynamisches Ökosystem, welches von Mikroorganismen dominiert wird, die unter extremen Bedingungen überleben und funktionieren können. Eine Reihe physiologischer Anpassungen ermöglichen es der Mikrobiota, in diesem Lebensraum zu überdauern niedrige Temperaturen, geringe Wasser- und Nährstoffverfügbarkeit, hohe UV-Strahlung, usw. standzuhalten. Andere Fähigkeiten zielen darauf ab, sich einen Konkurrenzvorteil zu verschaffen, indem sie mit antimikrobiellen Substanzen benachbarte Mikroorganismen stören und die intermikrobielle Kommunikation beeinflussen. Arktische Mikroorganismen sind Bioindikatoren, die Klimaveränderungen anzeigen können. Die Arktis bietet Möglichkeiten, die lokale Mikrobiota zu untersuchen, um Rückschlüsse auf den Klimawandel zu ziehen. Insbesondere Forschung über potenziell pathogene Phänotypen, die infolge der Beschleunigung des Klimawandels in andere Lebensräume auf der ganzen Welt verteilt werden könnten, ist hier von herausragender Bedeutung. In diesem Zusammenhang gibt es zahlreiche Untersuchungen zur Erforschung arktischer Lebensräume sowie Beschreibungen der in ihnen lebenden Mikroben, während über bakterielle Konkurrenzstrategien, die üblicherweise mit Virulenz und Krankheitserregern verbunden sind, bisher wenig geforscht wurde. In diesem Projekt wurden Umweltproben aus der Arktis entnommen und Bakterien und Pilze isoliert. Die klinische Relevanz dieser Mikroorganismen wurde durch Untersuchung der folgenden Virulenzmarker bewertet: Fähigkeit, in einem bestimmten Temperaturbereich zu wachsen, Expression von Antibiotikaresistenz und Produktion von Hämolysinen. Ziel dieses Projekts war es, das Vorkommen dieser Eigenschaften zu bestimmen, um die mikrobiellen Anpassungen in vom Klimawandel bedrohten Lebensräumen zu verstehen. Die beschriebenen Bakterienisolate konnten in einem relevanten Temperaturbereich wachsen, in einigen Fällen von mehr als 30 °C höher als ihre ursprüngliche Isolationstemperatur. Eine beträchtliche Anzahl der Isolate exprimierte konsistent Verbindungen, die Schaf- und Rindererythrozyten auf Blutagar bei verschiedenen Inkubationstemperaturen lysieren können. Die Extrakte einiger dieser Bakterien konnten eine schnelle und vollständige Lyse von Schaf- und Rindererythrozytensuspensionen verursachen und sind möglicherweise sogar hämolytisch gegenüber humanem Blut. Darüber hinaus zeigten Genomanalysen eine Vielzahl von Resistenzgenen gegen natürliche und synthetische antimikrobielle Verbindungen, einige neuartige. In-vitro-Experimente zeigten, dass einige Resistenzphänotypen zu Wildtyp-Populationen während andere zu Nicht-Wildtyp gehören, was auf einen menschlichen Einfluss auf den Erwerb von Antibiotikaresistenzen in der Umwelt eindeutig hindeutet. Die Ergebnisse dieses Projekts zeigen das Vorhandensein von Virulenz-assoziierten Faktoren, die von Mikroorganismen natürlicher, nicht klinischer Umgebungen exprimiert werden. Diese Studie enthält nach unserem besten Wissen einige der ersten Berichte über hämolytische Mikroben, die aus der Arktis isoliert wurden. Darüber hinaus liefert es zusätzliche Informationen über das Vorhandensein und die Expression von intrinsischer und erworbener antimikrobieller Resistenz in Umweltisolaten und trägt zum Verständnis der Entwicklung relevanter pathogener Spezies und opportunistischer Pathogene bei. Schließlich beleuchtet diese Studie einige der potenziellen Risiken, die mit Veränderungen in den Polarregionen (Schmelzen und Zerstörung des Lebensraums, Übergang des Ökosystems und Wiederbesiedlung) als wichtige indirekte Folgen der globalen Erwärmung und veränderter klimatischer Bedingungen auf dem Planeten verbunden sind. KW - Arctic KW - pathogens KW - virulence KW - hemolysis KW - antimicrobial resistance KW - climate change KW - bacteria KW - fungi KW - thermotolerance KW - antibiotic resistance KW - Arktis KW - Krankheitserreger KW - Virulenz KW - Hämolyse KW - Antibiotikaresistenz KW - Klimawandel KW - Bakterien KW - Pilze KW - Thermotoleranz Y1 - 2021 N1 - The author would like to acknowledge that the project leading to this doctoral dissertation has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 675546, research project “Microorganisms in Warming Arctic Environments - MicroArctic”. ER - TY - THES A1 - Windirsch-Woiwode, Torben T1 - Permafrost carbon stabilisation by recreating a herbivore-driven ecosystem T1 - Stabilisierung von Permafrostkohlenstoff durch die Wiedereinführung eines Herbivor-geprägten Ökosystems N2 - With Arctic ground as a huge and temperature-sensitive carbon reservoir, maintaining low ground temperatures and frozen conditions to prevent further carbon emissions that contrib-ute to global climate warming is a key element in humankind’s fight to maintain habitable con-ditions on earth. Former studies showed that during the late Pleistocene, Arctic ground condi-tions were generally colder and more stable as the result of an ecosystem dominated by large herbivorous mammals and vast extents of graminoid vegetation – the mammoth steppe. Characterised by high plant productivity (grassland) and low ground insulation due to animal-caused compression and removal of snow, this ecosystem enabled deep permafrost aggrad-ation. Now, with tundra and shrub vegetation common in the terrestrial Arctic, these effects are not in place anymore. However, it appears to be possible to recreate this ecosystem local-ly by artificially increasing animal numbers, and hence keep Arctic ground cold to reduce or-ganic matter decomposition and carbon release into the atmosphere. By measuring thaw depth, total organic carbon and total nitrogen content, stable carbon iso-tope ratio, radiocarbon age, n-alkane and alcohol characteristics and assessing dominant vegetation types along grazing intensity transects in two contrasting Arctic areas, it was found that recreating conditions locally, similar to the mammoth steppe, seems to be possible. For permafrost-affected soil, it was shown that intensive grazing in direct comparison to non-grazed areas reduces active layer depth and leads to higher TOC contents in the active layer soil. For soil only frozen on top in winter, an increase of TOC with grazing intensity could not be found, most likely because of confounding factors such as vertical water and carbon movement, which is not possible with an impermeable layer in permafrost. In both areas, high animal activity led to a vegetation transformation towards species-poor graminoid-dominated landscapes with less shrubs. Lipid biomarker analysis revealed that, even though the available organic material is different between the study areas, in both permafrost-affected and sea-sonally frozen soils the organic material in sites affected by high animal activity was less de-composed than under less intensive grazing pressure. In conclusion, high animal activity af-fects decomposition processes in Arctic soils and the ground thermal regime, visible from reduced active layer depth in permafrost areas. Therefore, grazing management might be utilised to locally stabilise permafrost and reduce Arctic carbon emissions in the future, but is likely not scalable to the entire permafrost region. N2 - Mit dem arktischen Boden als riesigem und temperatursensiblen Kohlenstoffspeicher ist die Aufrechterhaltung niedriger Bodentemperaturen und gefrorener Bedingungen zur Verhinde-rung weiterer Kohlenstoffemissionen, die zum globalen Klimawandel beitragen, ein Schlüs-selelement im Kampf der Menschheit, die Erde weiterhin bewohnbar zu halten. Vorangehen-de Studien ergaben, dass die Bodenbedingungen in der Arktis während des späten Pleisto-zäns im Allgemeinen kälter und dadurch stabiler waren, als Ergebnis eines Ökosystems, das von großen pflanzenfressenden Säugetieren und weiten Flächen grasartiger Vegetation do-miniert wurde - der Mammutsteppe. Gekennzeichnet durch hohe Pflanzenproduktivität (Gras-land) und geringe Bodenisolierung aufgrund von Kompression und Schneeräumung durch Tiere, ermöglichte dieses Ökosystem eine tiefreichende Entwicklung des Permafrosts. Heut-zutage, mit der vorherrschenden Tundra- und Strauchvegetation in der Arktis, sind diese Ef-fekte nicht mehr präsent. Es scheint aber möglich, dieses Ökosystem lokal durch künstliche Erhöhung der Tierbestände nachzubilden und somit den arktischen Boden kühl zu halten, um den Abbau von organischem Material und die Freisetzung von Kohlenstoff in die Atmosphäre zu verringern. Durch Messungen der Auftautiefe, des Gesamtgehalts des organischen Kohlenstoffs und Stickstoffs, des stabilen Kohlenstoff-Isotopenverhältnisses, des Radiocarbonalters, der n-Alkan- und Alkoholcharakteristika sowie durch Bestimmung der vorherrschenden Vegetati-onstypen entlang von Beweidungsgradienten in zwei unterschiedlichen arktischen Gebieten habe ich festgestellt, dass die Schaffung ähnlicher Bedingungen wie in der Mammutsteppe möglich sein könnte. Für durch Permafrost beeinflusste Böden konnte ich zeigen, dass eine intensive Beweidung im direkten Vergleich mit unbeweideten Gebieten die Tiefe der Auftau-schicht verringert und zu höheren Gehalten an organischem Kohlenstoff im oberen Bodenbe-reich führt. Für im Winter nur oberflächlich gefrorene Böden konnte kein Anstieg des organi-schen Kohlenstoffgehalts mit zunehmender Beweidungsintensität festgestellt werden, höchstwahrscheinlich aufgrund von Störfaktoren wie vertikalen Wasser- und Kohlenstoffbe-wegungen, die nicht durch eine undurchlässige Schicht wie beim Permafrost begrenzt sind. In beiden Gebieten führte eine hohe Tieraktivität zu einer Umwandlung der Vegetation hin zu artenarmen, von Gräsern dominierten Landschaften mit weniger Sträuchern. Die Analyse von Lipid-Biomarkern ergab, dass das verfügbare organische Material zwar zwischen den Unter-suchungsgebieten unterschiedlich war, aber sowohl in Permafrostgebieten als auch in saiso-nal gefrorenen Böden in Bereichen mit hoher Tieraktivität weniger stark zersetzt war als unter geringerer Beweidungsintensität. Zusammenfassend beeinflusst eine hohe Tieraktivität die Zersetzungsvorgänge in arktischen Böden und das thermische Regime des Bodens, was sich in einer reduzierten Tiefe der Auftauschicht in Permafrostgebieten widerspiegelt. Daher könn-te das Beweidungsmanagement in Zukunft aktiv eingesetzt werden, um den Permafrost lokal zu stabilisieren und gefroren zu halten sowie die Kohlenstoffemissionen in der Arktis zu ver-ringern. Aufgrund der Größe der Fläche, die in der terrestrischen Arktis von Permafrost be-einflusst ist, wird ein solches Beweidungsmanagement aber nicht als Maßnahme auf die ge-samte Permafrostregion ausgedehnt werden können. KW - permafrost KW - carbon KW - climate change KW - grazing KW - Arctic KW - Arktis KW - Kohlenstoff KW - Klimawandel KW - Beweidung KW - Permafrost Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-624240 ER -