TY - JOUR A1 - Moreno, Marcelo Spegiorin A1 - Melnick, Daniel A1 - Rosenau, M. A1 - Báez, Juan Carlos A1 - Klotz, Jan A1 - Oncken, Onno A1 - Tassara, Andres A1 - Chen, J. A1 - Bataille, Klaus A1 - Bevis, M. A1 - Socquet, Anne A1 - Bolte, John A1 - Vigny, C. A1 - Brooks, B. A1 - Ryder, I. A1 - Grund, Volker A1 - Smalley, B. A1 - Carrizo, Daniel A1 - Bartsch, M. A1 - Hase, H. T1 - Toward understanding tectonic control on the M-w 8.8 2010 Maule Chile earthquake JF - Earth & planetary science letters N2 - The Maule earthquake of 27th February 2010 (M-w = 8.8) affected similar to 500 km of the Nazca-South America plate boundary in south-central Chile producing spectacular crustal deformation. Here, we present a detailed estimate of static coseismic surface offsets as measured by survey and continuous GPS, both in near- and far-field regions. Earthquake slip along the megathrust has been inferred from a Joint inversion of our new data together with published GPS, InSAR, and land-level changes data using Green's functions generated by a spherical finite-element model with realistic subduction zone geometry. The combination of the data sets provided a good resolution, indicating that most of the slip was well resolved. Coseismic slip was concentrated north of the epicenter with up to 16 m of slip, whereas to the south it reached over 10 m within two minor patches. A comparison of coseismic slip with the slip deficit accumulated since the last great earthquake in 1835 suggests that the 2010 event closed a mature seismic gap. Slip deficit distribution shows an apparent local overshoot that highlight cycle-to-cycle variability, which has to be taken into account when anticipating future events from interseismic observations. Rupture propagation was obviously not affected by bathymetric features of the incoming plate. Instead, splay faults in the upper plate seem to have limited rupture propagation in the updip and along-strike directions. Additionally, we found that along-strike gradients in slip are spatially correlated with geometrical inflections of the megathrust. Our study suggests that persistent tectonic features may control strain accumulation and release along subduction megathrusts. KW - GPS KW - Chile KW - Maule KW - slip model KW - FEM Y1 - 2012 U6 - https://doi.org/10.1016/j.epsl.2012.01.006 SN - 0012-821X VL - 321 IS - 3 SP - 152 EP - 165 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Melnick, Daniel A1 - Cisternas, Marco A1 - Moreno, Marcos A1 - Norambuena, Ricardo T1 - Estimating coseismic coastal uplift with an intertidal mussel calibration for the 2010 Maule Chile earthquake (M-w=8.8) JF - Quaternary science reviews : the international multidisciplinary research and review journal N2 - Coseismic coastal uplift has been quantified using sessile intertidal organisms after several great earthquakes following FitzRoy's pioneer measurements in 1835. A dense survey of such markers may complement space geodetic data to obtain an accurate distribution of fault slip and earthquake segmentation. However, uplift estimates based on diverse intertidal organisms tend to differ, because of few methodological and comparative studies. Here, we calibrate and estimate coastal uplift in the southern segment of the 2010 Maule, Chile earthquake (M-w = 8.8) using > 1100 post-earthquake elevation measurements of the sessile mussel Perumytilus purpuratus. This mussel is the predominant competitor for rocky shores all along the Pacific coast of South America, where it forms fringes or belts distinctively in the middle intertidal zone. These belts are centered at mean sea level and their width should equal one third of the tidal range. We measured belt widths close to this value at 40% of the sites, but overall widths are highly variable due to the unevenness in belt tops; belt bases, in turn, are rather regular. Belt top unevenness apparently results from locally-enhanced wave splash, whereas belt base evenness is controlled by predation. According to our measurements made beyond the earthquake rupture, the belt base is at the bottom of the middle intertidal zone, and thus we propose to estimate coastal uplift using the belt base mean elevation plus one sixth of the tidal range to reach mean sea level. Within errors our estimates agree with GPS displacements but differ from other methods. Comparisons of joint inversions for megathrust slip suggest combining space geodetic data with estimates from intertidal organisms may locally increase the detail of slip distributions. KW - Coastal uplift KW - Maule earthquake KW - Chile KW - Intertidal organisms KW - Perumytilus mussels KW - Slip distribution Y1 - 2012 U6 - https://doi.org/10.1016/j.quascirev.2012.03.012 SN - 0277-3791 VL - 42 IS - 5 SP - 29 EP - 42 PB - Elsevier CY - Oxford ER - TY - GEN A1 - Abujatum Berndt, Leonor T1 - Dafür sollten wir uns nicht verschulden müssen! : Bildungsrevolution in Chile N2 - Weltweit brodelt es, Bürger gehen auf die Straße. In Chile will man sich die Ungerechtigkeiten des Bildungssystems nicht länger gefallen lassen. Nur wer zahlt, darf lernen – dagegen wehrt sich vor allem die Jugend mit aller Macht, auch mit der Macht der Neuen Medien. Öffentlichkeitswirksam werden die Proteste inszeniert. Wird die chilenische Regierung weiterhin mit Knüppeln auf Demonstranten einschlagen oder einlenken? KW - Lateinamerika KW - Chile KW - Bildung KW - Latin America KW - Chile KW - Education Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-57946 SN - 0944-8101 ER -