TY - THES A1 - Dahmani, Ismail T1 - Influenza A virus matrix protein M1 T1 - Influenza-A-Virus-Matrixprotein M1 BT - structural determinants of membrane binding and protein- induced deformation BT - strukturelle Determinanten der Membranbindung und protein-induzierte Deformation N2 - Influenza A virus (IAV) is a pathogen responsible for severe seasonal epidemics threatening human and animal populations every year. During the viral assembly process in the infected cells, the plasma membrane (PM) has to bend in localized regions into a vesicle towards the extracellular side. Studies in cellular models have proposed that different viral proteins might be responsible for inducing membrane curvature in this context (including M1), but a clear consensus has not been reached. M1 is the most abundant protein in IAV particles. It plays an important role in virus assembly and budding at the PM. M1 is recruited to the host cell membrane where it associates with lipids and other viral proteins. However, the details of M1 interactions with the cellular PM, as well as M1-mediated membrane bending at the budozone, have not been clarified. In this work, we used several experimental approaches to analyze M1-lipids and M1-M1 interactions. By performing SPR analysis, we quantified membrane association for full-length M1 and different genetically engineered M1 constructs (i.e., N- and C-terminally truncated constructs and a mutant of the polybasic region). This allowed us to obtain novel information on the protein regions mediating M1 binding to membranes. By using fluorescence microscopy, cryogenic transmission electron microscopy (cryo-TEM), and three-dimensional (3D) tomography (cryo-ET), we showed that M1 is indeed able to cause membrane deformation on vesicles containing negatively-charged lipids, in the absence of other viral components. Further, sFCS analysis proved that simple protein binding is not sufficient to induce membrane restructuring. Rather, it appears that stable M1-M1 interactions and multimer formation are required to alter the bilayer three-dimensional structure through the formation of a protein scaffold. Finally, to mimic the budding mechanism in cells that arise by the lateral organization of the virus membrane components on lipid raft domains, we created vesicles with lipid domains. Our results showed that local binding of M1 to spatial confined acidic lipids within membrane domains of vesicles led to local M1 inward curvature. N2 - Das Influenza-A-Virus (IAV) ist ein Erreger, der für schwere saisonale Epidemien verantwortlich ist, die jedes Jahr Menschen und Tiere bedrohen. Während des viralen Assemblierungsprozesses in den infizierten Zellen muss sich die Plasmamembran (PM) an bestimmten Stellen zu einem Vesikel zur extrazellulären Seite biegen. Studien an zellulären Modellen haben ergeben, dass verschiedene virale Proteine (einschließlich M1) für die Induktion der Membrankrümmung in diesem Zusammenhang verantwortlich sein könnten, ein eindeutiger Konsens wurde jedoch nicht erreicht. M1 ist das am häufigsten vorkommende Protein in IAV-Partikeln. Es spielt eine wichtige Rolle bei der Virusassemblierung und Knospung. M1 wird zur Wirtszellmembran rekrutiert, wo es sich mit Lipiden und anderen viralen Proteinen assoziiert. Die Einzelheiten der Interaktionen von M1 mit der zellulären PM sowie die M1-vermittelte Membranverbiegung am Ort der Virusfreisetzung sind jedoch noch nicht geklärt. In dieser Arbeit wurden mehrere experimentelle Ansätze zur Analyse von M1-Lipiden und M1-M1 Wechselwirkungen untersucht. Mittels SPR-Analyse wurde die Membranassoziation für M1 in voller Länge und verschiedene gentechnisch veränderte M1-Konstrukte (d. h. N- und C-terminal verkürzte Konstrukte und eine Mutante der polybasischen Region) quantifiziert; so konnten neue Erkenntnisse über die Proteinregionen, die die Bindung von M1 an Membranen steuern, gewonnen werden. Mit Hilfe der Fluoreszenzmikroskopie, kryogener Transmissionselektronenmikroskopie (cryo-TEM) und dreidimensionaler (3D) Tomographie (cryo-ET) konnten wir zeigen, dass M1 tatsächlich in der Lage ist, die Membran von Vesikeln, die negativ geladene Lipide enthalten, zu deformieren (und zwar ohne andere virale Komponenten). Außerdem bewies die sFCS-Analyse, dass eine einfache Proteinbindung nicht ausreicht, um eine Umstrukturierung der Membran zu bewirken. Vielmehr scheint es, dass stabile M1-M1-Wechselwirkungen und die Bildung von Multimeren erforderlich sind, um die dreidimensionale Struktur der Doppelschicht Struktur durch die Bildung eines Proteingerüsts zu verändern. Um schließlich den Knospungsmechanismus zu imitieren, der durch die laterale Organisation der Virusmembrankomponenten auf Lipid-Raft-Domänen entsteht, haben wir Vesikel mit Lipiddomänen erzeugt. Unsere Ergebnisse zeigten, dass die lokale Bindung von M1 an räumlich begrenzte saure Lipide innerhalb der Membrandomänen der Vesikel zu einer lokalen Krümmung von M1 nach innen führt. KW - Influenza A virus KW - Influenza KW - Pathogen KW - Lipids KW - Epidemic KW - Epidemics KW - Plasma membrane KW - Viral assembly KW - Virus KW - Vesicle KW - Giant Vesicles KW - Budozone KW - M1-M1 interaction KW - Virion KW - Membrane deformation KW - IAV particles KW - membrane binding KW - M1-lipids KW - protein binding KW - GUV KW - Giant unilamellar vesicles KW - Budozone KW - Epidemie KW - Epidemien KW - GUV KW - Riesenvesikel KW - riesige unilamellare Vesikel KW - IAV-Partikel KW - Influenza KW - Influenza-A-Virus KW - Lipide KW - M1-M1-Interaktion KW - M1-Lipide KW - Membrandeformation KW - Pathogen KW - Plasmamembran KW - Vesikel KW - Virusassemblierung, Virion KW - Virus KW - Membranbindung KW - Proteinbindung Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-527409 ER -