TY - THES A1 - Hanf, Franziska Stefanie T1 - South Asian summer monsoon variability: a modelling study with the atmospheric regional climate model HIRHAM5 T1 - Variabilität des Südasiatischen Sommermonsuns: eine Modellstudie mit dem regionalen Atmosphärenmodell HIRHAM5 N2 - The lives of more than 1/6 th of the world population is directly affected by the caprices of the South Asian summer monsoon rainfall. India receives around 78 % of the annual precipitation during the June-September months, the summer monsoon season of South Asia. But, the monsoon circulation is not consistent throughout the entire summer season. Episodes of heavy rainfall (active periods) and low rainfall (break periods) are inherent to the intraseasonal variability of the South Asian summer monsoon. Extended breaks or long-lasting dryness can result in droughts and hence trigger crop failures and in turn famines. Furthermore, India's electricity generation from renewable sources (wind and hydro-power), which is increasingly important in order to satisfy the rapidly rising demand for energy, is highly reliant on the prevailing meteorology. The major drought years 2002 and 2009 for the Indian summer monsoon during the last decades, which are results of the occurrence of multiple extended breaks, emphasise exemplary that the understanding of the monsoon system and its intraseasonal variation is of greatest importance. Although, numerous studies based on observations, reanalysis data and global model simulations have been carried out with the focus on monsoon active and break phases over India, the understanding of the monsoon intraseasonal variability is only in the infancy stage. Regional climate models could benefit the comprehension of monsoon breaks by its resolution advantage. This study investigates moist dynamical processes that initiate and maintain breaks during the South Asian summer monsoon using the atmospheric regional climate model HIRHAM5 at a horizontal resolution of 25 km forced by the ECMWF ERA Interim reanalysis for the period 1979-2012. By calculating moisture and moist static energy budgets the various competing mechanisms leading to extended breaks are quantitatively estimated. Advection of dry air from the deserts of western Asia towards central India is the dominant moist dynamical process in initiating extended break conditions over South Asia. Once initiated, the extended breaks are maintained due to many competing mechanisms: (i) the anomalous easterlies at the southern flank of this anticyclonic anomaly weaken the low-level cross-equatorial jet and thus the moisture transport into the monsoon region, (ii) differential radiative heating over the continental and the oceanic tropical convergence zone induces a local Hadley circulation with anomalous rising over the equatorial Indian Ocean and descent over central India, and (iii) a cyclonic response to positive rainfall anomalies over the near-equatorial Indian Ocean amplifies the anomalous easterlies over India and hence contributes to the low-level divergence over central India. A sensitivity experiment that mimics a scenario of higher atmospheric aerosol concentrations over South Asia addresses a current issue of large uncertainty: the role aerosols play in suppressing monsoon rainfall and hence in triggering breaks. To study the indirect aerosol effects the cloud droplet number concentration was increased to imitate the aerosol's function as cloud condensation nuclei. The sensitivity experiment with altered microphysical cloud properties shows a reduction in the summer monsoon precipitation together with a weakening of the South Asian summer monsoon. Several physical mechanisms are proposed to be responsible for the suppressed monsoon rainfall: (i) according to the first indirect radiative forcing the increase in the number of cloud droplets causes an increase in the cloud reflectivity of solar radiation, leading to a climate cooling over India which in turn reduces the hydrological cycle, (ii) a stabilisation of the troposphere induced by a differential cooling between the surface and the upper troposphere over central India inhibits the growth of deep convective rain clouds, (iii) an increase of the amount of low and mid-level clouds together with a decrease in high-level cloud amount amplify the surface cooling and hence the atmospheric stability, and (iv) dynamical changes of the monsoon manifested as a anomalous anticyclonic circulation over India reduce the moisture transport into the monsoon region. The study suggests that the changes in the total precipitation, which are dominated by changes in the convective precipitation, mainly result from the indirect radiative forcing. Suppression of rainfall due to the direct microphysical effect is found to be negligible over India. Break statistics of the polluted cloud scenario indicate an increase in the occurrence of short breaks (3 days), while the frequency of extended breaks (> 7 days) is clearly not affected. This disproves the hypothesis that more and smaller cloud droplets, caused by a high load of atmospheric aerosols trigger long drought conditions over central India. N2 - Das Leben von mehr als 1/6 der Weltbevölkerung wird direkt von den Kapriolen des Südasiatischen Sommermonsuns beeinflusst. Während der Sommermonsunzeit Südasiens von Juni bis September fällt allein in Indien ungefähr 78 % des Gesamtjahresniederschlags. Jedoch kennzeichnet der Monsun keine Phase von Dauerregenfällen. Vielmehr ist er von einzelnen Perioden mit hohen Niederschlagsmengen (aktive Monsunphasen) und geringen Niederschlagsmengen (Monsun-Unterbrechungsphasen) geprägt. Langanhaltende Monsun-Unterbrechungen können zu Dürren und damit zu Ernteausfällen, Hungersnöten und Einbußen in der Wirtschaft des Landes führen. Ebenso ist Indiens Stromerzeugung aus erneuerbaren Energien (Wind- und Wasserkraft), die eine Schlüsselkomponente in Indiens zukünftiger Energiestrategie spielt, direkt von den vorherrschenden Wettersituationen abhängig. Daher ist die Erforschung der intrasaisonalen Variabilität des Süd-asiatischen Sommermonsuns von enormer Wichtigkeit. Obwohl bereits zahlreiche Studien mit Fokus auf dem Wechsel von Aktiv- und Unterbrechungsphasen unter Verwendung von Beobachtungs- und Reanalysedaten und globalen Modellsimulationen existieren, steckt das Verständnis der intrasaisonalen Variabilität des Südasiatischen Sommermonsuns in seinen Anfängen. Die höhere Auflösung von Simulationen mit regionalen Klimamodellen kann zu einer Verbesserung des Verständnisses der Ursache von langanhaltenden Monsun-Unterbrechungsphasen beitragen. In dieser Arbeit werden speziell die feucht-dynamischen Prozesse, die Unterbrechungsphasen des Südasiatischen Sommermonsuns über Indien initiieren und aufrechterhalten, mit Hilfe des regionalen Atmosphärenmodells HIRHAM5 untersucht. Die Durchführung von Budget Studien ermöglicht die quantitative Abschätzung der verschiedenen konkurrierenden Mechanismen. Advektion von trockener Luft aus den Wüsten Westasiens nach Zentral-Indien wird als der dominierende Prozess für die Entstehung von Monsun-Unterbrechungen identifiziert. Diese Studie zeigt, dass für die Aufrechterhaltung von Unterbrechungsphasen abweichende Zirkulationsstrukturen, ausgelöst durch anormale strahlungsbedingte Erwärmungsmuster, verantwortlich sind. Zum einen beeinträchtigen abgeschwächte Westwinde über Süd-Indien und dem Arabischen Meer den Feuchtigkeitstransport in die Monsunregion, zum anderen führt eine lokal ausgeprägte Hadley-Zelle mit aufsteigenden (absinkenden) Luftmassen über dem zentralen äquatorialen Indischen Ozean (Zentral-Indien) zur Zunahme der atmosphärischen Stabilität und somit zur Hemmung von vertikalem Wolkenwachstum über Zentral-Indien. Gegenwärtige Studien beschäftigen sich mit der Frage, ob hohe Konzentrationen an atmosphärischen Aerosolen lange Dürreperioden über Indien steuern können. Ein durchgeführtes Sensitivitätsexperiment, welches ein Szenario von erhöhten atmosphärischen Aerosolkonzentrationen durch eine veränderte Anzahl an Wolkentropfen über Südasien imitiert, analysiert die Auswirkungen indirekter Aerosoleffekte auf den mittleren Südasiatischen Sommermonsun und dessen intrasaisonaler Variabilität. Die Zunahme der Wolkentropfenkonzentration führt in Zusammenhang mit einer Abschwächung des Südasiatischen Sommermonsuns zu einer Reduktion der Sommerniederschläge über Zentral-Indien. Das Experiment zeigt, dass die Unterdrückung der Monsunregenfälle hauptsächlich durch eine gehemmte Bildung von hochreichenden Konvektionswolken durch die indirekte Strahlungswirkung von Aerosolen hervorgerufen wird. Eine statistische Analyse der Häufigkeit von Monsun-Unterbrechungsphasen in dem „verschmutzten“ Wolkenszenario zeigt zwar eine Zunahme in dem Vorkommen von kurzen Monsun-Unterbrechungsphasen (3 Tage), jedoch eine Abnahme in der Häufigkeit von langanhaltenden Monsun-Unterbrechungsphasen (> 7 Tage). Dies führt zu der Schlussfolgerung, dass mehr und kleinere Wolkentropfen, verursacht durch hohe atmosphärischen Aerosolansammlungen, keine ausgedehnten Trockenphasen über Zentral-Indien auslösen. KW - South Asian summer monsoon KW - monsoon breaks KW - moist static energy KW - regional climate model KW - model tuning KW - aerosols KW - Südasiatischen Sommermonsun KW - Monsun-Unterbrechungen KW - Indien KW - Budgetstudien KW - Aerosole Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-89331 ER - TY - JOUR A1 - Hayes, Christopher T. A1 - Anderson, Robert F. A1 - Fleisher, Martin Q. A1 - Serno, Sascha A1 - Winckler, Gisela A1 - Gersonde, Rainer T1 - Quantifying lithogenic inputs to the North Pacific Ocean using the long-lived thorium isotopes JF - Earth & planetary science letters N2 - Dissolved Th-232 is added to the ocean though the partial dissolution of lithogenic materials such as aerosol dust in the same way as other lithogenically sourced and more biologically important trace metals such as Fe. Oceanic Th-230, on the other hand, is sourced primarily from the highly predictable decay of dissolved U-234. The rate at which dissolved Th-232 is released by mineral dissolution can be constrained by a Th removal rate derived from Th-230:U-234 disequilibria, assuming steady-state. Calculated fluxes of dissolved Th-232 can in turn be used to estimate fluxes of other lithogenically sourced dissolved metals as well as the original lithogenic supplies, such as aerosol dust deposition, given the concentration and fractional solubility of Th (or other metals) in the lithogenic material. This method is applied to 7 water column profiles from the Innovative North Pacific Experiment (INOPEX) cruise of 2009 and 2 sites from the subtropical North Pacific. The structure of shallow depth profiles suggests rapid scavenging at the surface and at least partial regeneration of dissolved Th-232 at 100-200 m depth. This rapid cycling could involve colloidal Th generated during mineral dissolution, which may not be subject to the same removal rates as the more truly dissolved Th-230. An additional deep source of Th-232 was revealed in deep waters, most likely dissolution of seafloor sediments, and offers a constraint on dissolved trace element supply due to boundary exchange. (C) 2013 Elsevier B.V. All rights reserved. KW - dust KW - aerosols KW - thorium KW - boundary exchange KW - North Pacific Ocean KW - GEOTRACES compliant Y1 - 2013 U6 - https://doi.org/10.1016/j.epsl.2013.09.025 SN - 0012-821X SN - 1385-013X VL - 383 IS - 12 SP - 16 EP - 25 PB - Elsevier CY - Amsterdam ER - TY - THES A1 - Samaras, Stefanos T1 - Microphysical retrieval of non-spherical aerosol particles using regularized inversion of multi-wavelength lidar data T1 - Retrieval der Mikrophysik von nichtkugelförmigen Aerosolpartikeln durch regularisierte Inversion von Mehrwellenlängen-Lidardaten N2 - Numerous reports of relatively rapid climate changes over the past century make a clear case of the impact of aerosols and clouds, identified as sources of largest uncertainty in climate projections. Earth’s radiation balance is altered by aerosols depending on their size, morphology and chemical composition. Competing effects in the atmosphere can be further studied by investigating the evolution of aerosol microphysical properties, which are the focus of the present work. The aerosol size distribution, the refractive index, and the single scattering albedo are commonly used such properties linked to aerosol type, and radiative forcing. Highly advanced lidars (light detection and ranging) have reduced aerosol monitoring and optical profiling into a routine process. Lidar data have been widely used to retrieve the size distribution through the inversion of the so-called Lorenz-Mie model (LMM). This model offers a reasonable treatment for spherically approximated particles, it no longer provides, though, a viable description for other naturally occurring arbitrarily shaped particles, such as dust particles. On the other hand, non-spherical geometries as simple as spheroids reproduce certain optical properties with enhanced accuracy. Motivated by this, we adapt the LMM to accommodate the spheroid-particle approximation introducing the notion of a two-dimensional (2D) shape-size distribution. Inverting only a few optical data points to retrieve the shape-size distribution is classified as a non-linear ill-posed problem. A brief mathematical analysis is presented which reveals the inherent tendency towards highly oscillatory solutions, explores the available options for a generalized solution through regularization methods and quantifies the ill-posedness. The latter will improve our understanding on the main cause fomenting instability in the produced solution spaces. The new approach facilitates the exploitation of additional lidar data points from depolarization measurements, associated with particle non-sphericity. However, the generalization of LMM vastly increases the complexity of the problem. The underlying theory for the calculation of the involved optical cross sections (T-matrix theory) is computationally so costly, that would limit a retrieval analysis to an unpractical point. Moreover the discretization of the model equation by a 2D collocation method, proposed in this work, involves double integrations which are further time consuming. We overcome these difficulties by using precalculated databases and a sophisticated retrieval software (SphInX: Spheroidal Inversion eXperiments) especially developed for our purposes, capable of performing multiple-dataset inversions and producing a wide range of microphysical retrieval outputs. Hybrid regularization in conjunction with minimization processes is used as a basis for our algorithms. Synthetic data retrievals are performed simulating various atmospheric scenarios in order to test the efficiency of different regularization methods. The gap in contemporary literature in providing full sets of uncertainties in a wide variety of numerical instances is of major concern here. For this, the most appropriate methods are identified through a thorough analysis on an overall-behavior basis regarding accuracy and stability. The general trend of the initial size distributions is captured in our numerical experiments and the reconstruction quality depends on data error level. Moreover, the need for more or less depolarization points is explored for the first time from the point of view of the microphysical retrieval. Finally, our approach is tested in various measurement cases giving further insight for future algorithm improvements. N2 - Zahlreiche Berichte von relativ schnellen Klimaveränderungen im vergangenen Jahrhundert liefern überzeugende Argumente über die Auswirkungen von Aerosolen und Wolken auf Wetter und Klima. Aerosole und Wolken wurden als Quellen größter Unsicherheit in Klimaprognosen identifiziert. Die Strahlungsbilanz der Erde wird verändert durch die Partikelgröße, ihre Morphologie und ihre chemische Zusammensetzung. Konkurrierende Effekte in der Atmosphäre können durch die Bestimmung von mikrophysikalischen Partikeleigenschaften weiter untersucht werden, was der Fokus der vorliegenden Arbeit ist. Die Aerosolgrößenverteilung, der Brechungsindex der Partikeln und die Einzel-Streu-Albedo sind solche häufig verwendeten Parameter, die mit dem Aerosoltyp und dem Strahlungsantrieb verbunden sind. Hoch entwickelte Lidare (Light Detection and Ranging) haben die Aerosolüberwachung und die optische Profilierung zu einem Routineprozess gemacht. Lidar-Daten wurden verwendet um die Größenverteilung zu bestimmen, was durch die Inversion des sogenannten Lorenz-Mie-Modells (LMM) gelingt. Dieses Modell bietet eine angemessene Behandlung für sphärisch angenäherte Partikeln, es stellt aber keine brauchbare Beschreibung für andere natürlich auftretende beliebig geformte Partikeln -wie z.B. Staubpartikeln- bereit. Andererseits stellt die Einbeziehung einer nicht kugelförmigen Geometrie –wie z.B. einfache Sphäroide- bestimmte optische Eigenschaften mit verbesserter Genauigkeit dar. Angesichts dieser Tatsache erweitern wir das LMM durch die Approximation von Sphäroid-Partikeln. Dazu ist es notwendig den Begriff einer zweidimensionalen Größenverteilung einzuführen. Die Inversion einer sehr geringen Anzahl optischer Datenpunkte zur Bestimmung der Form der Größenverteilung ist als ein nichtlineares schlecht gestelltes Problem bekannt. Eine kurze mathematische Analyse wird vorgestellt, die die inhärente Tendenz zu stark oszillierenden Lösungen zeigt. Weiterhin werden Optionen für eine verallgemeinerte Lösung durch Regularisierungsmethoden untersucht und der Grad der Schlechtgestelltheit quantifiziert. Letzteres wird unser Verständnis für die Hauptursache der Instabilität bei den berechneten Lösungsräumen verbessern. Der neue Ansatz ermöglicht es uns, zusätzliche Lidar-Datenpunkte aus Depolarisationsmessungen zu nutzen, die sich aus der Nicht-sphärizität der Partikeln assoziieren. Die Verallgemeinerung des LMMs erhöht erheblich die Komplexität des Problems. Die zugrundeliegende Theorie für die Berechnung der beteiligten optischen Querschnitte (T-Matrix-Ansatz) ist rechnerisch so aufwendig, dass eine Neuberechnung dieser nicht sinnvoll erscheint. Darüber hinaus wird ein zweidimensionales Kollokationsverfahren für die Diskretisierung der Modellgleichung vorgeschlagen. Dieses Verfahren beinhaltet Doppelintegrationen, die wiederum zeitaufwendig sind. Wir überwinden diese Schwierigkeiten durch Verwendung vorgerechneter Datenbanken sowie einer hochentwickelten Retrieval-Software (SphInX: Spheroidal Inversion eXperiments). Diese Software wurde speziell für unseren Zweck entwickelt und ist in der Lage mehrere Datensatzinversionen gleichzeitig durchzuführen und eine große Auswahl von mikrophysikalischen Retrieval-Ausgaben bereitzustellen. Eine hybride Regularisierung in Verbindung mit einem Minimierungsverfahren wird als Grundlage für unsere Algorithmen verwendet. Synthetische Daten-Inversionen werden mit verschiedenen atmosphärischen Szenarien durchgeführt, um die Effizienz verschiedener Regularisierungsmethoden zu untersuchen. Die Lücke in der gegenwärtigen wissenschaftlichen Literatur gewisse Unsicherheiten durch breitgefächerte numerische Fälle bereitzustellen, ist ein Hauptanliegen dieser Arbeit. Motiviert davon werden die am besten geeigneten Verfahren einer gründlichen Analyse in Bezug auf ihr Gesamtverhalten, d.h. Genauigkeit und Stabilität, unterzogen. Der allgemeine Trend der Anfangsgrößenverteilung wird in unseren numerischen Experimenten erfasst. Zusätzlich hängt die Rekonstruktionsqualität vom Datenfehler ab. Darüber hinaus wird die Anzahl der notwendigen Depolarisationspunkte zum ersten Mal aus der Sicht des mikrophysikalischen Parameter-Retrievals erforscht. Abschließend verwenden wir unsere Software für verschiedene Messfälle, was weitere Einblicke für künftige Verbesserungen des Algorithmus gibt. KW - microphysics KW - retrieval KW - lidar KW - aerosols KW - regularization KW - ill-posed KW - inversion KW - Mikrophysik KW - Retrieval KW - Lidar KW - Aerosole KW - Regularisierung KW - schlecht gestellt KW - Inversion Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-396528 ER -