TY - GEN A1 - Su, Yingna A1 - Kliem, Bernhard A1 - van Ballegooijen, Adriaan A1 - Deluca, Edward T1 - Numerical simulations of the CME on 2010 April 8 T2 - Solar and Astrophysical Dynamos and Magnetic Activity N2 - We present 3D zero-beta ideal MHD simulations of the solar flare/CME event that occurred in Active Region 11060 on 2010 April 8. The initial magnetic configurations of the two simulations are stable nonlinear force-free field and unstable magnetic field models constructed by Su et al. (2011) using the flux rope insertion method. The MHD simulations confirm that the stable model relaxes to a stable equilibrium, while the unstable model erupts as a CME. Comparisons between observations and MHD simulations of the CME are also presented. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 674 KW - Sun: coronal mass ejections (CMEs) KW - Sun: flares KW - Sun: magnetic fields Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-414887 SN - 1866-8372 IS - 674 SP - 575 EP - 576 ER - TY - JOUR A1 - Liu, Rui A1 - Kliem, Bernhard A1 - Toeroek, Tibor A1 - Liu, Chang A1 - Titov, Viacheslav S. A1 - Lionello, Roberto A1 - Linker, Jon A. A1 - Wang, Haimin T1 - Slow rise and partial eruption of a double-decker filament. I. observations and interpretation JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - We study an active-region dextral filament that was composed of two branches separated in height by about 13 Mm, as inferred from three-dimensional reconstruction by combining SDO and STEREO-B observations. This "double-decker" configuration sustained for days before the upper branch erupted with a GOES-class M1.0 flare on 2010 August 7. Analyzing this evolution, we obtain the following main results. (1) During the hours before the eruption, filament threads within the lower branch were observed to intermittently brighten up, lift upward, and then merge with the upper branch. The merging process contributed magnetic flux and current to the upper branch, resulting in its quasi-static ascent. (2) This transfer might serve as the key mechanism for the upper branch to lose equilibrium by reaching the limiting flux that can be stably held down by the overlying field or by reaching the threshold of the torus instability. (3) The erupting branch first straightened from a reverse S shape that followed the polarity inversion line and then writhed into a forward S shape. This shows a transfer of left-handed helicity in a sequence of writhe-twist-writhe. The fact that the initial writhe is converted into the twist of the flux rope excludes the helical kink instability as the trigger process of the eruption, but supports the occurrence of the instability in the main phase, which is indeed indicated by the very strong writhing motion. (4) A hard X-ray sigmoid, likely of coronal origin, formed in the gap between the two original filament branches in the impulsive phase of the associated flare. This supports a model of transient sigmoids forming in the vertical flare current sheet. (5) Left-handed magnetic helicity is inferred for both branches of the dextral filament. (6) Two types of force-free magnetic configurations are compatible with the data, a double flux rope equilibrium and a single flux rope situated above a loop arcade. KW - Sun: coronal mass ejections (CMEs) KW - Sun: filaments, prominences KW - Sun: flares Y1 - 2012 U6 - https://doi.org/10.1088/0004-637X/756/1/59 SN - 0004-637X VL - 756 IS - 1 PB - IOP Publ. Ltd. CY - Bristol ER -