TY - JOUR A1 - Socquet, Anne A1 - Valdes, Jesus Pina A1 - Jara, Jorge A1 - Cotton, Fabrice Pierre A1 - Walpersdorf, Andrea A1 - Cotte, Nathalie A1 - von Specht, Sebastian A1 - Ortega-Culaciati, Francisco A1 - Carrizo, Daniel A1 - Norabuena, Edmundo T1 - An 8month slow slip event triggers progressive nucleation of the 2014 Chile megathrust JF - Geophysical research letters N2 - The mechanisms leading to large earthquakes are poorly understood and documented. Here we characterize the long-term precursory phase of the 1 April 2014 M(w)8.1 North Chile megathrust. We show that a group of coastal GPS stations accelerated westward 8months before the main shock, corresponding to a M(w)6.5 slow slip event on the subduction interface, 80% of which was aseismic. Concurrent interface foreshocks underwent a diminution of their radiation at high frequency, as shown by the temporal evolution of Fourier spectra and residuals with respect to ground motions predicted by recent subduction models. Such ground motions change suggests that in response to the slow sliding of the subduction interface, seismic ruptures are progressively becoming smoother and/or slower. The gradual propagation of seismic ruptures beyond seismic asperities into surrounding metastable areas could explain these observations and might be the precursory mechanism eventually leading to the main shock. KW - seismology KW - GPS KW - subduction KW - precursor Y1 - 2017 U6 - https://doi.org/10.1002/2017GL073023 SN - 0094-8276 SN - 1944-8007 VL - 44 SP - 4046 EP - 4053 PB - American Geophysical Union CY - Washington ER -