TY - JOUR A1 - Kurze, Susanne A1 - Heinken, Thilo A1 - Fartmann, Thomas T1 - Nitrogen enrichment in host plants increases the mortality of common Lepidoptera species JF - Oecologia N2 - The recent decline of Lepidoptera species strongly correlates with the increasing intensification of agriculture in Western and Central Europe. However, the effects of changed host-plant quality through agricultural fertilization on this insect group remain largely unexplored. For this reason, we tested the response of six common butterfly and moth species to host-plant fertilization using fertilizer quantities usually applied in agriculture. The larvae of the study species Coenonympha pamphilus, Lycaena phlaeas, Lycaena tityrus, Pararge aegeria, Rivula sericealis and Timandra comae were distributed according to a split-brood design to three host-plant treatments comprising one control treatment without fertilization and two fertilization treatments with an input of 150 and 300kgNha(-1)year(-1), respectively. In L.tityrus, we used two additional fertilization treatments with an input of 30 and 90kgNha(-1)year(-1), respectively. Fertilization increased the nitrogen concentration of both host-plant species, Rumex acetosella and Poa pratensis, and decreased the survival of larvae in all six Lepidoptera species by at least one-third, without clear differences between sorrel- and grass-feeding species. The declining survival rate in all species contradicts the well-accepted nitrogen-limitation hypothesis, which predicts a positive response in species performance to dietary nitrogen content. In contrast, this study presents the first evidence that current fertilization quantities in agriculture exceed the physiological tolerance of common Lepidoptera species. Our results suggest that (1) the negative effect of plant fertilization on Lepidoptera has previously been underestimated and (2) that it contributes to the range-wide decline of Lepidoptera. KW - Agricultural fertilization KW - Global change KW - Host-plant quality KW - Nitrogen-limitation hypothesis KW - Rearing experiment Y1 - 2018 U6 - https://doi.org/10.1007/s00442-018-4266-4 SN - 0029-8549 SN - 1432-1939 VL - 188 IS - 4 SP - 1227 EP - 1237 PB - Springer CY - New York ER - TY - JOUR A1 - Kurze, Susanne A1 - Heinken, Thilo A1 - Fartmann, Thomas T1 - Nitrogen enrichment of host plants has mostly beneficial effects on the life-history traits of nettle-feeding butterflies JF - Acta oecologica : international journal of ecology N2 - Butterflies rank among the most threatened animal groups throughout Europe. However, current population trends differ among species. The nettle-feeding butterflies Aglais io and Aglais urticae cope successfully with the anthropogenic land-use change. Both species are assumed to be pre-adapted to higher nitrogen contents in their host plant, stinging nettle (Urtica dioica). However, it is currently unknown, whether this pre-adaptation enables both Aglais species to cope successfully or even to benefit from the excessive nitrogen availabilities in nettles growing in modern farmlands. For this reason, this study focused on the response of both Aglais species to unfertilized nettles compared to nettles receiving 150 or 300 kg N ha(-1) yr(-1) (i.e., common fertilizer quantities of modern-day agriculture). Fertilized nettles were characterized by higher nitrogen concentrations and lower C:N ratios compared to the control group. In both Aglais species, the individuals feeding on fertilized nettles had higher survival rates, shorter larval periods and heavier pupae and, in A. urticae also longer forewings. All these trait shifts are beneficial for the individuals, lowering their risk to die before reproduction and increasing their reproductive potential. These responses agree with the well-accepted nitrogen-limitation hypothesis predicting a positive relationship between the nitrogen content of the diet and the performance of herbivorous insects. Furthermore, our findings suggest that the increasing abundance of both Aglais species may result not only from the increasing spread of nettles into the farmland but also from changes in their quality due to the eutrophication of the landscape during recent decades. KW - Aglais KW - Fertilization KW - Host-plant quality KW - Landscape eutrophication KW - Nitrogen-limitation hypothesis KW - Rearing experiment Y1 - 2017 U6 - https://doi.org/10.1016/j.actao.2017.11.005 SN - 1146-609X SN - 1873-6238 VL - 85 SP - 157 EP - 164 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Kurze, Susanne A1 - Bareither, Nils A1 - Metz, Johannes T1 - Phenology, roots and reproductive allocation, but not the LHS scheme, shape ecotypes along an aridity gradient JF - Perspectives in plant ecology, evolution and systematics N2 - This study tested systematically at two spatial scales for key traits shaping within-species ecotypic differentiation under increasing aridity. It assessed different plant strategy theories and considered potential implications for climate change. We studied the widespread Mediterranean grass Brachypodium hybridum. At large scale, we tested 14 populations along a steep natural aridity gradient (114-954 mm annual rainfall). At small scale, we tested the microclimatic contrast between plants originating from corresponding north (more mesic) and south (more arid) exposed hillslopes. Fifteen traits were measured in the greenhouse, including the popular traits of the LeafHeight- Seed scheme (SLA, plant height, seed mass), several traits on phenology, architecture, growth, fitness, and rarely measured root traits. Clear trait shifts indicated ecotypic differentiation along the large-scale gradient. Earlier phenology, higher reproductive allocation and reduced root investment characterized arid ecotypes. Surprisingly, no trait of the Leaf-Height-Seed scheme shifted with aridity and root responses were opposite to the theory of optimal resource partitioning. Trait differences between north and south exposures were small, often inconsistent between sites, and poorly matched the trends across the large-scale gradient. South exposures thus appeared unlikely to harbour distinct ecotypes better adapted to aridity. Our findings highlight ecotypes as a crucial way how species span environmental gradients, yet underpinning their restriction at small spatial scales. In combination, this possibly renders populations more vulnerable to climate change. We draw attention to specific, partly unexpected traits and pose the question whether the LeafHeight- Seed scheme has limited applicability for intraspecific investigations in drylands. KW - Brachypodium hybridum KW - Local adaptation KW - Rainfall gradient KW - Seed mass KW - SLA KW - Slope exposure Y1 - 2017 U6 - https://doi.org/10.1016/j.ppees.2017.09.004 SN - 1433-8319 VL - 29 SP - 20 EP - 29 PB - Elsevier CY - Jena ER -