TY - JOUR A1 - Paraskevopoulou, Sofia A1 - Tiedemann, Ralph A1 - Weithoff, Guntram T1 - Differential response to heat stress among evolutionary lineages of an aquatic invertebrate species complex JF - Biology letters N2 - Under global warming scenarios, rising temperatures can constitute heat stress to which species may respond differentially. Within a described species, knowledge on cryptic diversity is of further relevance, as different lineages/cryptic species may respond differentially to environmental change. The Brachionus calyciflorus species complex (Rotifera), which was recently described using integrative taxonomy, is an essential component of aquatic ecosystems. Here, we tested the hypothesis that these (formerly cryptic) species differ in their heat tolerance. We assigned 47 clones with nuclear ITS1 (nuITS1) and mitochondrial COI (mtCOI) markers to evolutionary lineages, now named B. calyciflorus sensu stricto (s.s.) and B. fernandoi. We selected 15 representative clones and assessed their heat tolerance as a bi-dimensional phenotypic trait affected by both the intensity and duration of heat stress. We found two distinct groups, with B. calyciflorus s.s. clones having higher heat tolerance than the novel species B. fernandoi. This apparent temperature specialization among former cryptic species underscores the necessity of a sound species delimitation and assignment, when organismal responses to environmental changes are investigated. KW - Brachionus calyciflorus KW - critical thermal maximum KW - cryptic species KW - ecological speciation KW - rotifers KW - heat tolerance Y1 - 2018 U6 - https://doi.org/10.1098/rsbl.2018.0498 SN - 1744-9561 SN - 1744-957X VL - 14 IS - 11 PB - Royal Society CY - London ER - TY - JOUR A1 - Kiemel, Katrin A1 - De Cahsan, Binia A1 - Paraskevopoulou, Sofia A1 - Weithoff, Guntram A1 - Tiedemann, Ralph T1 - Mitochondrial genomes of the freshwater monogonont rotifer Brachionus fernandoi and of two additional B. calyciflorus sensu stricto lineages from Germany and the USA (Rotifera, Brachionidae) JF - Mitochondrial DNA. Part B-Resources N2 - The Brachionus calyciflorus species complex was recently subdivided into four species, but genetic resources to resolve phylogenetic relationships within this complex are still lacking. We provide two complete mitochondrial (mt) genomes from B. calyciflorus sensu stricto (Germany, USA) and the mt coding sequences (cds) from a German B. fernandoi. Phylogenetic analysis placed our B. calyciflorus sensu stricto strains close to the published genomes of B. calyciflorus, forming the putative sister species to B. fernandoi. Global representatives of B. calyciflorus sensu stricto (i.e. Europe, USA, and China) are genetically closer related to each other than to B. fernandoi (average pairwise nucleotide diversity 0.079 intraspecific vs. 0.254 interspecific). KW - Mitogenome KW - cryptic species KW - Brachionus calyciflorus s KW - Brachionus KW - fernandoi KW - monogonont rotifer Y1 - 2022 U6 - https://doi.org/10.1080/23802359.2022.2060765 SN - 2380-2359 VL - 7 IS - 4 SP - 646 EP - 648 PB - Routledge, Taylor & Francis Group CY - Abingdon ER - TY - JOUR A1 - Coraman, Emrah A1 - Dietz, Christian A1 - Hempel, Elisabeth A1 - Ghazaryan, Astghik A1 - Levin, Eran A1 - Presetnik, Primoz A1 - Zagmajster, Maja A1 - Mayer, Frieder T1 - Reticulate evolutionary history of a Western Palaearctic Bat Complex explained by multiple mtDNA introgressions in secondary contacts JF - Journal of biogeography N2 - Aim There is an increasing evidence showing that species within various taxonomic groups have reticulate evolutionary histories with several cases of introgression events. Investigating the phylogeography of species complexes can provide insight into these introgressions, and when and where these hybridizations occurred. In this study, we investigate the biogeography of a widely distributed Western Palaearctic bat species complex, namely Myotis nattereri sensu lato. This complex exhibits high genetic diversity and in its western distribution range is composed of deeply diverged genetical lineages. However, little is known about the genetic structure of the eastern populations. We also infer the conservation and taxonomical implications of the identified genetic divergences. Taxon Myotis nattereri sensu lato including M. schaubi. Location Western Palaearctic. Methods We analysed 161 specimens collected from 67 locations and sequenced one mitochondrial and four nuclear DNA markers, and combined these with the available GenBank sequences. We used haplotype networks, PCA, t-SNE and Bayesian clustering algorithms to investigate the population structure and Bayesian trees to infer the phylogenetic relationship of the lineages. Results We identified deeply divergent genetical lineages. In some cases, nuclear and mitochondrial markers were discordant, which we interpret are caused by hybridization between lineages. We identified three such introgression events. These introgressions occurred when spatially separated lineages came into contact after range expansions. Based on the genetic distinction of the identified lineages, we suggest a revision in the taxonomy of this species group with two possible new species: M. hoveli and M. tschuliensis. Main conclusions Our findings suggest that the M. nattereri complex has a reticulate evolutionary history with multiple cases of hybridizations between some of the identified lineages. KW - cryptic species KW - glacial refugia KW - hybridization KW - introgression KW - range expansions KW - the Caucasus Y1 - 2019 U6 - https://doi.org/10.1111/jbi.13509 SN - 0305-0270 SN - 1365-2699 VL - 46 IS - 2 SP - 343 EP - 354 PB - Wiley CY - Hoboken ER -