TY - JOUR A1 - Graja, Antonia A1 - Garcia-Carrizo, Francisco A1 - Jank, Anne-Marie A1 - Gohlke, Sabrina A1 - Ambrosi, Thomas H. A1 - Jonas, Wenke A1 - Ussar, Siegfried A1 - Kern, Matthias A1 - Schürmann, Annette A1 - Aleksandrova, Krasimira A1 - Bluher, Matthias A1 - Schulz, Tim Julius T1 - Loss of periostin occurs in aging adipose tissue of mice and its genetic ablation impairs adipose tissue lipid metabolism JF - Aging Cell N2 - Remodeling of the extracellular matrix is a key component of the metabolic adaptations of adipose tissue in response to dietary and physiological challenges. Disruption of its integrity is a well-known aspect of adipose tissue dysfunction, for instance, during aging and obesity. Adipocyte regeneration from a tissue-resident pool of mesenchymal stem cells is part of normal tissue homeostasis. Among the pathophysiological consequences of adipogenic stem cell aging, characteristic changes in the secretory phenotype, which includes matrix-modifying proteins, have been described. Here, we show that the expression of the matricellular protein periostin, a component of the extracellular matrix produced and secreted by adipose tissue-resident interstitial cells, is markedly decreased in aged brown and white adipose tissue depots. Using a mouse model, we demonstrate that the adaptation of adipose tissue to adrenergic stimulation and high-fat diet feeding is impaired in animals with systemic ablation of the gene encoding for periostin. Our data suggest that loss of periostin attenuates lipid metabolism in adipose tissue, thus recapitulating one aspect of age-related metabolic dysfunction. In human white adipose tissue, periostin expression showed an unexpected positive correlation with age of study participants. This correlation, however, was no longer evident after adjusting for BMI or plasma lipid and liver function biomarkers. These findings taken together suggest that age-related alterations of the adipose tissue extracellular matrix may contribute to the development of metabolic disease by negatively affecting nutrient homeostasis. KW - adipogenic progenitor cells KW - adipose tissue KW - aging KW - extracellular matrix KW - fatty acid metabolism KW - periostin Y1 - 2018 U6 - https://doi.org/10.1111/acel.12810 SN - 1474-9718 SN - 1474-9726 VL - 17 IS - 5 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Malyutina, Svetlana A1 - Laurinavichyute, Anna A1 - Terekhina, Maria A1 - Lapin, Yevgeniy T1 - No evidence for strategic nature of age-related slowing in sentence processing JF - Psychology and aging N2 - Older adults demonstrate a slower speed of linguistic processing, including sentence processing. In nonlinguistic cognitive domains such as memory, research suggests that age-related slowing of processing speed may be a strategy adopted in order to avoid potential error and/or to spare “cognitive resources.” So far, very few studies have tested whether older adults’ slower processing speed in the linguistic domain has a strategic nature as well. To fill this gap, we tested whether older adults can maintain language processing accuracy when a faster processing speed is enforced externally. Specifically, we compared sentence comprehension accuracy in younger and older adults when sentences were presented at the participant’s median self-paced reading speed versus twice as fast. We hypothesized that an external speed increase will cause a smaller accuracy decline in older than younger adults because older adults tend to adopt self-paced processing speeds “further away” from their performance limits. The hypothesis was not confirmed: The decline in accuracy due to faster presentation did not differ by age group. Thus, we found no evidence for strategic nature of age-related slowing of sentence processing. On the basis of our experimental design, we suggest that the age-related slowing of sentence processing is caused not only by motor slowdown, but also by a slowdown in cognitive processing KW - aging KW - processing speed KW - sentence comprehension KW - language and aging KW - processing strategies Y1 - 2018 U6 - https://doi.org/10.1037/pag0000302 SN - 0882-7974 SN - 1939-1498 VL - 33 IS - 7 SP - 1045 EP - 1059 PB - American Psychological Association CY - Washington ER - TY - JOUR A1 - Reifegerste, Jana A1 - Elin, Kirill A1 - Clahsen, Harald T1 - Persistent differences between native speakers and late bilinguals BT - Evidence from inflectional and derivational processing in older speakers JF - Bilingualism : language and cognition N2 - Previous research with younger adults has revealed differences between native (L1) and non-native late-bilingual (L2) speakers with respect to how morphologically complex words are processed. This study examines whether these L1/L2 differences persist into old age. We tested masked-priming effects for derived and inflected word forms in older L1 and L2 speakers of German and compared them to results from younger L1 and L2 speakers on the same experiment (mean ages: 62 vs. 24). We found longer overall response times paired with better accuracy scores for older (L1 and L2) participants than for younger participants. The priming patterns, however, were not affected by chronological age. While both L1 and L2 speakers showed derivational priming, only the L1 speakers demonstrated inflectional priming. We argue that general performance in both L1 and L2 is affected by aging, but that the more profound differences between native and non-native processing persist into old age. KW - aging KW - late bilinguals KW - processing KW - morphology KW - inflection KW - derivation Y1 - 2018 U6 - https://doi.org/10.1017/S1366728918000615 SN - 1366-7289 SN - 1469-1841 VL - 22 IS - 3 SP - 425 EP - 440 PB - Cambridge Univ. Press CY - New York ER -