TY - JOUR A1 - Vorburger, Thomas A1 - Nedielkov, Ruslan A1 - Brosig, Alexander A1 - Bok, Eva A1 - Schunke, Emina A1 - Steffen, Wojtek A1 - Mayer, Sonja A1 - Goetz, Friedrich A1 - Möller, Heiko Michael A1 - Steuber, Julia T1 - Role of the Na+-translocating NADH:quinone oxidoreductase in voltage generation and Na+ extrusion in Vibrio cholerae JF - Biochimica et biophysica acta : Bioenergetics N2 - For Vibrio cholerae, the coordinated import and export of Na+ is crucial for adaptation to habitats with different osmolarities. We investigated the Na+-extruding branch of the sodium cycle in this human pathogen by in vivo Na-23-NMR spectroscopy. The Na+ extrusion activity of cells was monitored after adding glucose which stimulated respiration via the Na+-translocating NADH:quinone oxidoreductase (Na+-NQR). In a V. cholerae deletion mutant devoid of the Na+-NQR encoding genes (nqrA-F), rates of respiratory Na+ extrusion were decreased by a factor of four, but the cytoplasmic Na+ concentration was essentially unchanged. Furthermore, the mutant was impaired in formation of transmembrane voltage (Delta psi, inside negative) and did not grow under hypoosmotic conditions at pH 8.2 or above. This growth defect could be complemented by transformation with the plasmid encoded nqr operon. In an alkaline environment, Na+/H+ antiporters acidify the cytoplasm at the expense of the transmembrane voltage. It is proposed that, at alkaline pH and limiting Na+ concentrations, the Na+-NQR is crucial for generation of a transmembrane voltage to drive the import of H+ by electrogenic Na+/H+ antiporters. Our study provides the basis to understand the role of the Na+-NQR in pathogenicity of V. cholerae and other pathogens relying on this primary Na+ pump for respiration. (C) 2015 Elsevier B.V. All rights reserved. KW - Nuclear magnetic resonance (NMR) KW - Sodium transport KW - Vibrio cholerae KW - Respiration KW - Na+ homeostasis KW - Hypoosmotic stress Y1 - 2016 U6 - https://doi.org/10.1016/j.bbabio.2015.12.010 SN - 0005-2728 SN - 0006-3002 VL - 1857 SP - 473 EP - 482 PB - Elsevier CY - Amsterdam ER -