TY - JOUR A1 - Hornemann, Andrea A1 - Eichert, Diane Madeleine A1 - Hoehl, Arne A1 - Tiersch, Brigitte A1 - Ulm, Gerhard A1 - Ryadnov, Maxim G. A1 - Beckhoff, Burkhard T1 - Investigating Membrane-Mediated Antimicrobial Peptide Interactions with Synchrotron Radiation Far-Infrared Spectroscopy JF - ChemPhysChem : a European journal of chemical physics and physical chemistry N2 - Synchrotron radiation-based Fourier transform infrared spectroscopy enables access to vibrational information from mid over far infrared to even terahertz domains. This information may prove critical for the elucidation of fundamental bio-molecular phenomena including folding-mediated innate host defence mechanisms. Antimicrobial peptides (AMPs) represent one of such phenomena. These are major effector molecules of the innate immune system, which favour attack on microbial membranes. AMPs recognise and bind to the membranes whereupon they assemble into pores or channels destabilising the membranes leading to cell death. However, specific molecular interactions responsible for antimicrobial activities have yet to be fully understood. Herein we probe such interactions by assessing molecular specific variations in the near-THz 400-40 cm(-1) range for defined helical AMP templates in reconstituted phospholipid membranes. In particular, we show that a temperature-dependent spectroscopic analysis, supported by 2D correlative tools, provides direct evidence for the membrane-induced and folding-mediated activity of AMPs. The far-FTIR study offers a direct and information-rich probe of membrane-related antimicrobial interactions. KW - antimicrobial peptides KW - electrostatic interactions KW - IR spectroscopy KW - phospholipid membranes KW - protein folding Y1 - 2022 U6 - https://doi.org/10.1002/cphc.202100815 SN - 1439-4235 SN - 1439-7641 VL - 23 IS - 4 PB - Wiley-VCH CY - Weinheim ER -