TY - JOUR A1 - Tian, Mei A1 - Reichetzeder, Christoph A1 - Li, Jian A1 - Hocher, Berthold T1 - Low birth weight, a risk factor for diseases in later life, is a surrogate of insulin resistance at birth JF - Journal of hypertension N2 - Low birth weight (LBW) is associated with diseases in adulthood. The birthweight attributed risk is independent of confounding such as gestational age, sex of the newborn but also social factors. The birthweight attributed risk for diseases in later life holds for the whole spectrum of birthweight. This raises the question what pathophysiological principle is actually behind the association. In this review, we provide evidence that LBW is a surrogate of insulin resistance. Insulin resistance has been identified as a key factor leading to type 2 diabetes, cardiovascular disease as well as kidney diseases. We first provide evidence linking LBW to insulin resistance during intrauterine life. This might be caused by both genetic (genetic variations of genes controlling glucose homeostasis) and/or environmental factors (due to alterations of macronutrition and micronutrition of the mother during pregnancy, but also effects of paternal nutrition prior to conception) leading via epigenetic modifications to early life insulin resistance and alterations of intrauterine growth, as insulin is a growth factor in early life. LBW is rather a surrogate of insulin resistance in early life - either due to inborn genetic or environmental reasons - rather than a player on its own. KW - epigenetics KW - fetal programing KW - genetics KW - insulin resistance KW - low birth weight Y1 - 2019 U6 - https://doi.org/10.1097/HJH.0000000000002156 SN - 0263-6352 SN - 1473-5598 VL - 37 IS - 11 SP - 2123 EP - 2134 PB - Kluwer CY - Philadelphia ER - TY - GEN A1 - Beaumont, Robin N. A1 - Warrington, Nicole M. A1 - Cavadino, Alana A1 - Tyrrell, Jessica A1 - Nodzenski, Michael A1 - Horikoshi, Momoko A1 - Geller, Frank A1 - Myhre, Ronny A1 - Richmond, Rebecca C. A1 - Paternoster, Lavinia A1 - Bradfield, Jonathan P. A1 - Kreiner-Møller, Eskil A1 - Huikari, Ville A1 - Metrustry, Sarah A1 - Lunetta, Kathryn L. A1 - Painter, Jodie N. A1 - Hottenga, Jouke-Jan A1 - Allard, Catherine A1 - Barton, Sheila J. A1 - Espinosa, Ana A1 - Marsh, Julie A. A1 - Potter, Catherine A1 - Zhang, Ge A1 - Ang, Wei A1 - Berry, Diane J. A1 - Bouchard, Luigi A1 - Das, Shikta A1 - Hakonarson, Hakon A1 - Heikkinen, Jani A1 - Helgeland, Øyvind A1 - Hocher, Berthold A1 - Hofman, Albert A1 - Inskip, Hazel M. A1 - Jones, Samuel E. A1 - Kogevinas, Manolis A1 - Lind, Penelope A. A1 - Marullo, Letizia A1 - Medland, Sarah E. A1 - Murray, Anna A1 - Murray, Jeffrey C. A1 - Njølstad, Pa ̊l R. A1 - Nohr, Ellen A. A1 - Reichetzeder, Christoph A1 - Ring, Susan M. A1 - Ruth, Katherine S. A1 - Santa-Marina, Loreto A1 - Scholtens, Denise M. A1 - Sebert, Sylvain A1 - Sengpiel, Verena A1 - Tuke, Marcus A. A1 - Vaudel, Marc A1 - Weedon, Michael N. A1 - Willemsen, Gonneke A1 - Wood, Andrew R. A1 - Yaghootkar, Hanieh A1 - Muglia, Louis J. A1 - Bartels, Meike A1 - Relton, Caroline L. A1 - Pennell, Craig E. A1 - Chatzi, Leda A1 - Estivill, Xavier A1 - Holloway, John W. A1 - Boomsma, Dorret I. A1 - Montgomery, Grant W. A1 - Murabito, Joanne M. A1 - Spector, Tim D. A1 - Power, Christine A1 - Ja ̈rvelin, Marjo-Ritta A1 - Bisgaard, Hans A1 - Grant, Struan F.A. A1 - Sørensen, Thorkild I.A. A1 - Jaddoe, Vincent W. A1 - Jacobsson, Bo A1 - Melbye, Mads A1 - McCarthy, Mark I. A1 - Hattersley, Andrew T. A1 - Hayes, M. Geoffrey A1 - Frayling, Timothy M. A1 - Hivert, Marie-France A1 - Felix, Janine F. A1 - Hyppo ̈nen, Elina A1 - Lowe, William L. , Jr A1 - Evans, David M. A1 - Lawlor, Debbie A. A1 - Feenstra, Bjarke A1 - Freathy, Rachel M. T1 - Genome-wide association study of offspring birth weight in 86 577 women identifies five novel loci and highlights maternal genetic effects that are independent of fetal genetics T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Genome-wide association studies of birth weight have focused on fetal genetics, whereas relatively little is known about the role of maternal genetic variation. We aimed to identify maternal genetic variants associated with birth weight that could highlight potentially relevant maternal determinants of fetal growth. We meta-analysed data on up to 8.7 million SNPs in up to 86 577 women of European descent from the Early Growth Genetics (EGG) Consortium and the UK Biobank. We used structural equation modelling (SEM) and analyses of mother–child pairs to quantify the separate maternal and fetal genetic effects. Maternal SNPs at 10 loci (MTNR1B, HMGA2, SH2B3, KCNAB1, L3MBTL3, GCK, EBF1, TCF7L2, ACTL9, CYP3A7) were associated with offspring birth weight at P < 5 Â 10 À8 . In SEM analyses, at least 7 of the 10 associations were consistent with effects of the maternal genotype acting via the intrauterine environment, rather than via effects of shared alleles with the fetus. Variants, or correlated proxies, at many of the loci had been previously associated with adult traits, including fasting glucose (MTNR1B, GCK and TCF7L2) and sex hormone levels (CYP3A7), and one (EBF1) with gestational duration. The identified associations indicate that genetic effects on maternal glucose, cytochrome P450 activity and gestational duration, and potentially on maternal blood pressure and immune function, are relevant for fetal growth. Further characterization of these associations in mechanistic and causal analyses will enhance understanding of the potentially modifiable maternal determinants of fetal growth, with the goal of reducing the morbidity and mortality associated with low and high birth weights. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 628 KW - alleles KW - birth weight KW - fetus KW - genotype KW - mothers KW - single nucleotide polymorphism KW - genetics KW - duration of gestation KW - genome-wide association study KW - offspring KW - biobanks Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-423100 SN - 1866-8372 IS - 628 ER -