TY - THES A1 - Zheng, Chunming T1 - Bursting and synchronization in noisy oscillatory systems T1 - Bursting und Synchronisation in verrauschten, oszillierenden Systemen N2 - Noise is ubiquitous in nature and usually results in rich dynamics in stochastic systems such as oscillatory systems, which exist in such various fields as physics, biology and complex networks. The correlation and synchronization of two or many oscillators are widely studied topics in recent years. In this thesis, we mainly investigate two problems, i.e., the stochastic bursting phenomenon in noisy excitable systems and synchronization in a three-dimensional Kuramoto model with noise. Stochastic bursting here refers to a sequence of coherent spike train, where each spike has random number of followers due to the combined effects of both time delay and noise. Synchronization, as a universal phenomenon in nonlinear dynamical systems, is well illustrated in the Kuramoto model, a prominent model in the description of collective motion. In the first part of this thesis, an idealized point process, valid if the characteristic timescales in the problem are well separated, is used to describe statistical properties such as the power spectral density and the interspike interval distribution. We show how the main parameters of the point process, the spontaneous excitation rate, and the probability to induce a spike during the delay action can be calculated from the solutions of a stationary and a forced Fokker-Planck equation. We extend it to the delay-coupled case and derive analytically the statistics of the spikes in each neuron, the pairwise correlations between any two neurons, and the spectrum of the total output from the network. In the second part, we investigate the three-dimensional noisy Kuramoto model, which can be used to describe the synchronization in a swarming model with helical trajectory. In the case without natural frequency, the Kuramoto model can be connected with the Vicsek model, which is widely studied in collective motion and swarming of active matter. We analyze the linear stability of the incoherent state and derive the critical coupling strength above which the incoherent state loses stability. In the limit of no natural frequency, an exact self-consistent equation of the mean field is derived and extended straightforward to any high-dimensional case. N2 - Rauschen ist in der Natur allgegenwärtig und führt zu einer reichen Dynamik in stochastischen Systemen von gekoppelten Oszillatoren, die in so unterschiedlichen Bereichen wie Physik, Biologie und in komplexen Netzwerken existieren. Korrelation und Synchronisation von zwei oder vielen Oszillatoren ist in den letzten Jahren ein aktives Forschungsfeld. In dieser Arbeit untersuchen wir hauptsächlich zwei Probleme, d.h. das stochastische Burst-Phänomen in verrauschten anregbaren Systemen und die Synchronisation in einem dreidimensionalen Kuramoto-Modell mit Rauschen. Stochastisches Bursting bezieht sich hier auf eine Folge von kohärenten Spike-Zügen, bei denen jeder Spike aufgrund der kombinierten Effekte von Zeitverzögerung und Rauschen eine zufällige Anzahl von Folge Spikes aufweist. Die Synchronisation als universelles Phänomen in nichtlinearen dynamischen Systemen kann anhand des Kuramoto-Modells, einem grundlegenden Modell bei der gekoppelter Oszillatoren und kollektiver Bewegung, gut demonstriert und analysiert werden. Im ersten Teil dieser Arbeit wird ein idealisierter Punktprozess betrachtet, der gültig ist, wenn die charakteristischen Zeitskalen im Problem gut voneinander getrennt sind,um statistische Eigenschaften wie die spektrale Leistungsdichte und die Intervallverteilung zwischen Neuronen Impulsen zu beschreiben. Wir zeigen, wie die Hauptparameter des Punktprozesses, die spontane Anregungsrate und die Wahrscheinlichkeit, während der Verzögerungsaktion einen Impuls zu induzieren, aus den Lösungen einer stationären und einer getriebenen Fokker-Planck-Gleichung berechnet werden können. Wir erweitern dieses Ergebnis auf den verzögerungsgekoppelten Fall und leiten analytisch die Statistiken der Impulse in jedem Neuron, die paarweisen Korrelationen zwischen zwei beliebigen Neuronen und das Spektrum der Zeitreihe alle Impulse aus dem Netzwerk ab. Im zweiten Teil untersuchen wir das dreidimensionale verrauschte Kuramoto-Modell, mit dem die Synchronisation eines Schwarmmodells mit schraubenförmigen Flugbahnen beschrieben werden kann. Im Fall ohne Eigenfrequenz jedes Teilchensist das System äquivalent zum Vicsek Modell, welches in der Beschreibung der kollektiven Bewegung von Schwärmen und aktiver Materie eine breite Anwendung findet. Wir analysieren die lineare Stabilität des inkohärenten Zustands und leiten die kritische Kopplungsstärke ab, oberhalb derer der inkohärente Zustand an Stabilität verliert. Im Fall ohne Eigenfrequenz wird eine exakte selbstkonsistente Gleichung für das mittlere Feld abgeleitet und direkt für höherdimensionale Bewegungen verallgemeinert. KW - Synchronization KW - Kuramoto model KW - Oscillation KW - stochastic bursting KW - Synchronisation KW - Kuramoto-Modell KW - Oszillatoren KW - Stochastisches Bursting Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-500199 ER - TY - THES A1 - Zemanová, Lucia T1 - Structure-function relationship in hierarchical model of brain networks T1 - Das Verhältnis von Struktur und Funktion in hierarchischem Model der Hirn-Netzwerken N2 - The mammalian brain is, with its numerous neural elements and structured complex connectivity, one of the most complex systems in nature. Recently, large-scale corticocortical connectivities, both structural and functional, have received a great deal of research attention, especially using the approach of complex networks. Here, we try to shed some light on the relationship between structural and functional connectivities by studying synchronization dynamics in a realistic anatomical network of cat cortical connectivity. We model the cortical areas by a subnetwork of interacting excitable neurons (multilevel model) and by a neural mass model (population model). With weak couplings, the multilevel model displays biologically plausible dynamics and the synchronization patterns reveal a hierarchical cluster organization in the network structure. We can identify a group of brain areas involved in multifunctional tasks by comparing the dynamical clusters to the topological communities of the network. With strong couplings of multilevel model and by using neural mass model, the dynamics are characterized by well-defined oscillations. The synchronization patterns are mainly determined by the node intensity (total input strengths of a node); the detailed network topology is of secondary importance. The biologically improved multilevel model exhibits similar dynamical patterns in the two regimes. Thus, the study of synchronization in a multilevel complex network model of cortex can provide insights into the relationship between network topology and functional organization of complex brain networks. N2 - Das Gehirn von Säugetieren stellt mit seinen zahlreichen, hochgradig vernetzten Neuronen ein natürliches Netzwerk von immenser Komplexität dar. In der jüngsten Vergangenheit sind die großflächige kortikale Konnektivitäten, sowohl unter strukturellen wie auch funktionalen Gesichtspunkten, in den Fokus der Forschung getreten. Die Verwendung von komplexe Netzwerke spielt hierbei eine entscheidende Rolle. In der vorliegenden Dissertation versuchen wir, das Verhältnis von struktureller und funktionaler Konnektivität durch Untersuchung der Synchronisationsdynamik anhand eines realistischen Modells der Konnektivität im Kortex einer Katze näher zu beleuchten. Wir modellieren die Kortexareale durch ein Subnetzwerk interagierender, erregbarer Neuronen (multilevel model) und durch ein Modell von Neuronenensembles (population model). Bei schwacher Kopplung zeigt das multilevel model eine biologisch plausible Dynamik und die Synchronisationsmuster lassen eine hierarchische Organisation der Netzwerkstruktur erkennen. Indem wir die dynamischen Cluster mit den topologischen Einheiten des Netzwerks vergleichen, sind wir in der Lage die Hirnareale, die an der Bewältigung komplexer Aufgaben beteiligt sind, zu identifizieren. Bei starker Kopplung im multilevel model und unter Verwendung des Ensemblemodells weist die Dynamik klare Oszillationen auf. Die Synchronisationsmuster werden hauptsächlich durch die Eingangsstärke an den einzelnen Knoten bestimmt, während die genaue Netzwerktopologie zweitrangig ist. Eine Erweiterung des Modells auf andere biologisch relevante Faktoren bestätigt die vorherigen Ergebnisse. Die Untersuchung der Synchronisation in einem multilevel model des Kortex ermöglicht daher tiefere Einblicke in die Zusammenhänge zwischen Netzwerktopologie und funktionaler Organisation in komplexen Hirn-Netzwerken. KW - komplexe Hirnnetzwerke KW - Verhältnis der Struktur und Funktion KW - hierarchisches Model KW - Synchronization KW - complex brain networks KW - structur-function relationship KW - hierarchical model KW - synchronization Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-18400 ER - TY - THES A1 - Teichmann, Erik T1 - Partial synchronization in coupled systems with repulsive and attractive interaction T1 - Partielle Synchronisation in Gekoppelten System mit Abstoßender und Anziehender Wechselwirkung N2 - Partial synchronous states exist in systems of coupled oscillators between full synchrony and asynchrony. They are an important research topic because of their variety of different dynamical states. Frequently, they are studied using phase dynamics. This is a caveat, as phase dynamics are generally obtained in the weak coupling limit of a first-order approximation in the coupling strength. The generalization to higher orders in the coupling strength is an open problem. Of particular interest in the research of partial synchrony are systems containing both attractive and repulsive coupling between the units. Such a mix of coupling yields very specific dynamical states that may help understand the transition between full synchrony and asynchrony. This thesis investigates partial synchronous states in mixed-coupling systems. First, a method for higher-order phase reduction is introduced to observe interactions beyond the pairwise one in the first-order phase description, hoping that these may apply to mixed-coupling systems. This new method for coupled systems with known phase dynamics of the units gives correct results but, like most comparable methods, is computationally expensive. It is applied to three Stuart-Landau oscillators coupled in a line with a uniform coupling strength. A numerical method is derived to verify the analytical results. These results are interesting but give importance to simpler phase models that still exhibit exotic states. Such simple models that are rarely considered are Kuramoto oscillators with attractive and repulsive interactions. Depending on how the units are coupled and the frequency difference between the units, it is possible to achieve many different states. Rich synchronization dynamics, such as a Bellerophon state, are observed when considering a Kuramoto model with attractive interaction in two subpopulations (groups) and repulsive interactions between groups. In two groups, one attractive and one repulsive, of identical oscillators with a frequency difference, an interesting solitary state appears directly between full and partial synchrony. This system can be described very well analytically. N2 - Partiell synchronisierte Zustände existieren zwischen voller Synchronisation und Asynchronie, in Systemen von gekoppelten Oszillatoren. Das Verständnis von partieller Synchronisation ist ein wichtiger Forschungszweig, da sie viele dynamische Zustände enthalten. Sie werden oft mithilfe von Phasendynamiken untersucht. Das ist jedoch ein Nachteil, da Phasendynamiken für gewöhnlich nur im Grenzfall von schwacher Kopplung, also einer Näherung in erster Ordnung der Kopplungsstärke, betrachtet werden. Die Verallgemeinerung zu höheren Ordnungen ist weiterhin ein offenes Problem. Systeme mit anziehender und abstoßender Kopplung zwischen den einzelnen Oszillatoren sind von speziellem Interesse in der Erforschung von partieller Synchronisation. Solch eine Mischung aus Kopplungsstärken führt zu bestimmten dynamischen Zuständen, die den Übergang von Synchronisation zu Asynchronie erklären könnten. Diese Arbeit untersucht solche Zustände in Systemen mit gemischten Kopplungsstärken. Zuerst wird eine neue Methode zur Bestimmung von Phasendynamiken in höheren Ordnungen eingeführt. Sie betrachtet mehr Kopplungsterme, als die einfachen paarweisen Interaktionen die in der ersten Ordnung der Kopplungsstärke auftreten, in der Hoffnung, dass diese Methode auch auf Systeme mit gemischter Kopplung anwendbar ist. Die neue Methode für Oszillatoren mit einer bekannten Phasendynamik, führt zu den richtigen Ergebnissen, ist aber aufwendig zu berechnen. Die Methode wird auf drei, in einer Linie gekoppelten, Stuart-Landau Oszillatoren angewendet. Eine numerische Methode wird abgeleitet, um die analytischen Ergebnisse zu verifizieren. Diese Ergebnisse sind interessant, aber durch die benötigte hohe Rechenleistung ist es weiterhin vorteilhaft einfachere Phasenmodelle zu untersuchen, die exotischere Zustände erreichen. Solch ein einfaches Model, das eher selten Beachtung findet, ist das Kuramoto Model mit anziehender und abstoßender Kopplung. Abhängig davon, wie die Oszillatoren gekoppelt und wie die Frequenzunterschiede zwischen den einzelnen Oszillatoren sind, ist es möglich viele verschiedene Zustände zu erreichen. Interessante Synchronisierungsdynamiken werden erreicht, wie zum Beispiel der Bellerophon Zustand, wenn ein Kuramoto Model mit zwei Gruppen, mit anziehender Kopplung innerhalb der Gruppen und abstoßender Kopplung zwischen den Gruppen, untersucht wird. Bei zwei Gruppen, eine anziehend und eine abstoßend, von identischen Oszillatoren mit einem Frequenzunterschied zwischen den Gruppen, wird ein interessanter solitärer Zustand beobachtet. Er befindet sich direkt am Übergang zwischen Synchronisation und partieller Synchronisation. Solch ein System ist sehr gut analytisch beschreibbar. KW - Synchronization KW - Dynamical Systems KW - Coupled Systems KW - gekoppelte System KW - dynamische Systeme KW - Synchronisation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-528943 ER - TY - JOUR A1 - Stark, Markus A1 - Bach, Moritz A1 - Guill, Christian T1 - Patch isolation and periodic environmental disturbances have idiosyncratic effects on local and regional population variabilities in meta-food chains JF - Theoretical ecology N2 - While habitat loss is a known key driver of biodiversity decline, the impact of other landscape properties, such as patch isolation, is far less clear. When patch isolation is low, species may benefit from a broader range of foraging opportunities, but are at the same time adversely affected by higher predation pressure from mobile predators. Although previous approaches have successfully linked such effects to biodiversity, their impact on local and metapopulation dynamics has largely been ignored. Since population dynamics may also be affected by environmental disturbances that temporally change the degree of patch isolation, such as periodic changes in habitat availability, accurate assessment of its link with isolation is highly challenging. To analyze the effect of patch isolation on the population dynamics on different spatial scales, we simulate a three-species meta-food chain on complex networks of habitat patches and assess the average variability of local populations and metapopulations, as well as the level of synchronization among patches. To evaluate the impact of periodic environmental disturbances, we contrast simulations of static landscapes with simulations of dynamic landscapes in which 30 percent of the patches periodically become unavailable as habitat. We find that increasing mean patch isolation often leads to more asynchronous population dynamics, depending on the parameterization of the food chain. However, local population variability also increases due to indirect effects of increased dispersal mortality at high mean patch isolation, consequently destabilizing metapopulation dynamics and increasing extinction risk. In dynamic landscapes, periodic changes of patch availability on a timescale much slower than ecological interactions often fully synchronize the dynamics. Further, these changes not only increase the variability of local populations and metapopulations, but also mostly overrule the effects of mean patch isolation. This may explain the often small and inconclusive impact of mean patch isolation in natural ecosystems. KW - Metacommunity dynamics KW - Dispersal KW - Patch isolation KW - Stability KW - Synchronization KW - Disturbance Y1 - 2021 U6 - https://doi.org/10.1007/s12080-021-00510-0 SN - 1874-1738 SN - 1874-1746 VL - 14 IS - 3 SP - 489 EP - 500 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Seemüller, Anna A1 - Müller, E. M. A1 - Rösler, Frank T1 - EEG-power and -coherence changes in a unimodal and a crossmodal working memory task with visual and kinesthetic stimuli JF - International journal of psychophysiology N2 - We investigated EEG-power and EEG-coherence changes in a unimodal and a crossmodal matching-to-sample working memory task with either visual or kinesthetic stimuli. Angle-shaped trajectories were used as stimuli presented either as a moving dot on a screen or as a passive movement of a haptic device. Effects were evaluated during the different phases of encoding, maintenance, and recognition. Alpha power was modulated during encoding by the stimulus modality, and in crossmodal conditions during encoding and maintenance by the expected modality of the upcoming test stimulus. These power modulations were observed over modality-specific cortex regions. Systematic changes of coherence for crossmodal compared to unimodal tasks were not observed during encoding and maintenance but only during recognition. There, coherence in the theta-band increased between electrode sites over left central and occipital cortex areas in the crossmodal compared to the unimodal conditions. The results underline the importance of modality-specific representations and processes in unimodal and crossmodal working memory tasks. Crossmodal recognition of visually and kinesthetically presented object features seems to be related to a direct interaction of somatosensory/motor and visual cortex regions by means of long-range synchronization in the theta-band and such interactions seem to take place at the beginning of the recognition phase, i.e. when crossmodal transfer is actually necessary. KW - Visual representations KW - Kinesthetic representations KW - Synchronization KW - Crossmodal matching KW - Haptics Y1 - 2012 U6 - https://doi.org/10.1016/j.ijpsycho.2011.10.009 SN - 0167-8760 VL - 83 IS - 1 SP - 87 EP - 95 PB - Elsevier CY - Amsterdam ER - TY - THES A1 - Rosenblum, Michael T1 - Phase synchronization of chaotic systems : from theory to experimental applications N2 - In einem klassischen Kontext bedeutet Synchronisierung die Anpassung der Rhythmen von selbst-erregten periodischen Oszillatoren aufgrund ihrer schwachen Wechselwirkung. Der Begriff der Synchronisierung geht auf den berühmten niederläandischen Wissenschaftler Christiaan Huygens im 17. Jahrhundert zurück, der über seine Beobachtungen mit Pendeluhren berichtete. Wenn zwei solche Uhren auf der selben Unterlage plaziert wurden, schwangen ihre Pendel in perfekter Übereinstimmung. Mathematisch bedeutet das, daß infolge der Kopplung, die Uhren mit gleichen Frequenzen und engverwandten Phasen zu oszillieren begannen. Als wahrscheinlich ältester beobachteter nichtlinearer Effekt wurde die Synchronisierung erst nach den Arbeiten von E. V. Appleton und B. Van der Pol gegen 1920 verstanden, die die Synchronisierung in Triodengeneratoren systematisch untersucht haben. Seitdem wurde die Theorie gut entwickelt, und hat viele Anwendungen gefunden. Heutzutage weiss man, dass bestimmte, sogar ziemlich einfache, Systeme, ein chaotisches Verhalten ausüben können. Dies bedeutet, dass ihre Rhythmen unregelmäßig sind und nicht durch nur eine einzige Frequenz charakterisiert werden können. Wie in der Habilitationsarbeit gezeigt wurde, kann man jedoch den Begriff der Phase und damit auch der Synchronisierung auf chaotische Systeme ausweiten. Wegen ihrer sehr schwachen Wechselwirkung treten Beziehungen zwischen den Phasen und den gemittelten Frequenzen auf und führen damit zur Übereinstimmung der immer noch unregelmäßigen Rhythmen. Dieser Effekt, sogenannter Phasensynchronisierung, konnte später in Laborexperimenten anderer wissenschaftlicher Gruppen bestätigt werden. Das Verständnis der Synchronisierung unregelmäßiger Oszillatoren erlaubte es uns, wichtige Probleme der Datenanalyse zu untersuchen. Ein Hauptbeispiel ist das Problem der Identifikation schwacher Wechselwirkungen zwischen Systemen, die nur eine passive Messung erlauben. Diese Situation trifft häufig in lebenden Systemen auf, wo Synchronisierungsphänomene auf jedem Niveau erscheinen - auf der Ebene von Zellen bis hin zu makroskopischen physiologischen Systemen; in normalen Zuständen und auch in Zuständen ernster Pathologie. Mit unseren Methoden konnten wir eine Anpassung in den Rhythmen von Herz-Kreislauf und Atmungssystem in Menschen feststellen, wobei der Grad ihrer Interaktion mit der Reifung zunimmt. Weiterhin haben wir unsere Algorithmen benutzt, um die Gehirnaktivität von an Parkinson Erkrankten zu analysieren. Die Ergebnisse dieser Kollaboration mit Neurowissenschaftlern zeigen, dass sich verschiedene Gehirnbereiche genau vor Beginn des pathologischen Zitterns synchronisieren. Außerdem gelang es uns, die für das Zittern verantwortliche Gehirnregion zu lokalisieren. N2 - In a classical context, synchronization means adjustment of rhythms of self-sustained periodic oscillators due to their weak interaction. The history of synchronization goes back to the 17th century when the famous Dutch scientist Christiaan Huygens reported on his observation of synchronization of pendulum clocks: when two such clocks were put on a common support, their pendula moved in a perfect agreement. In rigorous terms, it means that due to coupling the clocks started to oscillate with identical frequencies and tightly related phases. Being, probably, the oldest scientifically studied nonlinear effect, synchronization was understood only in 1920-ies when E. V. Appleton and B. Van der Pol systematically - theoretically and experimentally - studied synchronization of triode generators. Since that the theory was well developed and found many applications. Nowadays it is well-known that certain systems, even rather simple ones, can exhibit chaotic behaviour. It means that their rhythms are irregular, and cannot be characterized only by one frequency. However, as is shown in the Habilitation work, one can extend the notion of phase for systems of this class as well and observe their synchronization, i.e., agreement of their (still irregular!) rhythms: due to very weak interaction there appear relations between the phases and average frequencies. This effect, called phase synchronization, was later confirmed in laboratory experiments of other scientific groups. Understanding of synchronization of irregular oscillators allowed us to address important problem of data analysis: how to reveal weak interaction between the systems if we cannot influence them, but can only passively observe, measuring some signals. This situation is very often encountered in biology, where synchronization phenomena appear on every level - from cells to macroscopic physiological systems; in normal states as well as in severe pathologies. With our methods we found that cardiovascular and respiratory systems in humans can adjust their rhythms; the strength of their interaction increases with maturation. Next, we used our algorithms to analyse brain activity of Parkinsonian patients. The results of this collaborative work with neuroscientists show that different brain areas synchronize just before the onset of pathological tremor. Morevoever, we succeeded in localization of brain areas responsible for tremor generation. KW - Chaotische Dynamik KW - Phase KW - Synchronization KW - Datenanalyse KW - Chaotic dynamics KW - phase KW - synchronization KW - data analysis Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-0000682 ER - TY - THES A1 - Romano Blasco, M. Carmen T1 - Synchronization analysis by means of recurrences in phase space N2 - Die tägliche Erfahrung zeigt uns, daß bei vielen physikalischen Systemen kleine Änderungen in den Anfangsbedingungen auch zu kleinen Änderungen im Verhalten des Systems führen. Wenn man z.B. das Steuerrad beim Auto fahren nur ein wenig zur Seite dreht, unterscheidet sich die Richtung des Wagens auch nur wenig von der ursprünglichen Richtung. Aber es gibt auch Situationen, für die das Gegenteil dieser Regel zutrifft. Die Folge von Kopf und Zahl, die wir erhalten, wenn wir eine Münze werfen, zeigt ein irreguläres oder chaotisches Zeitverhalten, da winzig kleine Änderungen in den Anfangsbedingungen, die z.B. durch leichte Drehung der Hand hervorgebracht werden, zu vollkommen verschiedenen Resultaten führen. In den letzten Jahren hat man sehr viele nichtlineare Systeme mit schnellen Rechnern untersucht und festgestellt, daß eine sensitive Abhängigkeit von den Anfangsbedingungen, die zu einem chaotischen Verhalten führt, keinesfalls die Ausnahme darstellt, sondern eine typische Eigenschaft vieler Systeme ist. Obwohl chaotische Systeme kleinen Änderungen in den Anfangsbedingungen gegenüber sehr empfindlich reagieren, können sie synchronisieren wenn sie durch eine gemeinsame äußere Kraft getrieben werden, oder wenn sie miteinander gekoppelt sind. Das heißt, sie vergessen ihre Anfangsbedingungen und passen ihre Rhythmen aneinander. Diese Eigenschaft chaotischer Systeme hat viele Anwendungen, wie z.B. das Design von Kommunikationsgeräte und die verschlüsselte Übertragung von Mitteilungen. Abgesehen davon, findet man Synchronisation in natürlichen Systemen, wie z.B. das Herz-Atmungssystem, raumverteilte ökologische Systeme, die Magnetoenzephalographische Aktivität von Parkinson Patienten, etc. In solchen komplexen Systemen ist es nicht trivial Synchronisation zu detektieren und zu quantifizieren. Daher ist es notwendig, besondere mathematische Methoden zu entwickeln, die diese Aufgabe erledigen. Das ist das Ziel dieser Arbeit. Basierend auf dergrundlegenden Idee von Rekurrenzen (Wiederkehr) von Trajektorien dynamischer Systeme, sind verschiedene Maße entwickelt worden, die Synchronisation in chaotischen und komplexen Systemen detektieren. Das Wiederkehr von Trajektorien erlaubt uns Vorhersagen über den zukünftigen Zustand eines Systems zu treffen. Wenn man diese Eigenschaft der Wiederkehr von zwei interagierenden Systemen vergleicht, kann man Schlüsse über ihre dynamische Anpassung oder Synchronisation ziehen. Ein wichtiger Vorteil der Rekurrenzmaße für Synchronisation ist die Robustheit gegen Rauschen und Instationariät. Das erlaubt eine Synchronisationsanalyse in Systemen durchzuführen, die bisher nicht darauf untersucht werden konnten. N2 - This work deals with the connection between two basic phenomena in Nonlinear Dynamics: synchronization of chaotic systems and recurrences in phase space. Synchronization takes place when two or more systems adapt (synchronize) some characteristic of their respective motions, due to an interaction between the systems or to a common external forcing. The appearence of synchronized dynamics in chaotic systems is rather universal but not trivial. In some sense, the possibility that two chaotic systems synchronize is counterintuitive: chaotic systems are characterized by the sensitivity ti different initial conditions. Hence, two identical chaotic systems starting at two slightly different initial conditions evolve in a different manner, and after a certain time, they become uncorrelated. Therefore, at a first glance, it does not seem to be plausible that two chaotic systems are able to synchronize. But as we will see later, synchronization of chaotic systems has been demonstrated. On one hand it is important to investigate the conditions under which synchronization of chaotic systems occurs, and on the other hand, to develop tests for the detection of synchronization. In this work, I have concentrated on the second task for the cases of phase synchronization (PS) and generalized synchronization (GS). Several measures have been proposed so far for the detection of PS and GS. However, difficulties arise with the detection of synchronization in systems subjected to rather large amounts of noise and/or instationarities, which are common when analyzing experimental data. The new measures proposed in the course of this thesis are rather robust with respect to these effects. They hence allow to be applied to data, which have evaded synchronization analysis so far. The proposed tests for synchronization in this work are based on the fundamental property of recurrences in phase space. T2 - Synchronization analysis by means of recurrences in phase space KW - Synchronisation KW - Wiederkehrdiagramme KW - Chaos KW - Zeitreihenanalyse KW - Synchronization KW - Recurrence Plots KW - Chaos KW - Data Analysis Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-0001756 ER - TY - THES A1 - Pereira da Silva, Tiago T1 - Synchronization in active networks T1 - Synchronisation in Aktiven Netzwerken N2 - In nature one commonly finds interacting complex oscillators which by the coupling scheme form small and large networks, e.g. neural networks. Surprisingly, the oscillators can synchronize, still preserving the complex behavior. Synchronization is a fundamental phenomenon in coupled nonlinear oscillators. Synchronization can be enhanced at different levels, that is, the constraints on which the synchronization appears. Those can be in the trajectory amplitude, requiring the amplitudes of both oscillators to be equal, giving place to complete synchronization. Conversely, the constraint could also be in a function of the trajectory, e.g. the phase, giving place to phase synchronization (PS). In this case, one requires the phase difference between both oscillators to be finite for all times, while the trajectory amplitude may be uncorrelated. The study of PS has shown its relevance to important technological problems, e.g. communication, collective behavior in neural networks, pattern formation, Parkinson disease, epilepsy, as well as behavioral activities. It has been reported that it mediates processes of information transmission and collective behavior in neural and active networks and communication processes in the Human brain. In this work, we have pursed a general way to analyze the onset of PS in small and large networks. Firstly, we have analyzed many phase coordinates for compact attractors. We have shown that for a broad class of attractors the PS phenomenon is invariant under the phase definition. Our method enables to state about the existence of phase synchronization in coupled chaotic oscillators without having to measure the phase. This is done by observing the oscillators at special times, and analyzing whether this set of points is localized. We have show that this approach is fruitful to analyze the onset of phase synchronization in chaotic attractors whose phases are not well defined, as well as, in networks of non-identical spiking/bursting neurons connected by chemical synapses. Moreover, we have also related the synchronization and the information transmission through the conditional observations. In particular, we have found that inside a network clusters may appear. These can be used to transmit more than one information, which provides a multi-processing of information. Furthermore, These clusters provide a multichannel communication, that is, one can integrate a large number of neurons into a single communication system, and information can arrive simultaneously at different places of the network. N2 - In oder Natur sind interagierende komplexe Oszillatoren, die Netzwerke bilden, häufig anzutreffen. Erstaunlich ist, dass sich diese Oszillatoren synchronisieren, ohne ihr eigenes komplexes Verhalten zu verlieren. Diese Fähigkeit zur Synchronisation ist eine wesentliche Eigenschaft von gekoppelten nichtlinearen Oszillatoren. Die Fähigkeit zur Synchronisation kann auf unterschiedliche Weise durch Eingriff in die Bedingungen, die zur Synchronisation führen, verbessert werden. Es kann sowohl eine Synchronisation der Amplituden als auch der Phasen stattfinden bzw. erzwungen werden. Insbesondere Phase Synchronisation über die Phase (PS) hat sich in den wichtigen Bereichen der Technik, Kommunikation, Soziologie und Neurologie als Modellierungsgrundlage bewiesen. Bekannte Beispiele aus der Neurologie sind Parkinson und Epilepsie. In der vorliegenden Arbeit haben wir nach einem verallgemeinerten Weg gesucht, das Phänomen der PS in Netzwerken analysieren zu können. Zuerst haben wir viele Phasendefinitionen für einfache Attraktoren (Oszillatoren mit definierten Phaseneigenschaften) untersucht und festgestellt, dass das Phänomen der PS unabhängig von der Definition der Phase ist. Als nächstes haben wir begonnen, die maximale Abweichungen abzuschätzen, bei der die Synchronisation für bei einer gegebene Phase nicht verlorengeht. Abschließend haben wir eine Methode entwickelt, mittels derer Synchronisation in chaotischen System festgestellt werden kann, ohne die Phase selbst messen zu müssen. Dazu wird zu geeigneten Zeitpunkten der Zustandsraum untersucht. Wir können zeigen, dass mittels dieser Methode in chaotisch Systemen sowohl die Grössenordnung der Synchronisation als auch die Bereiche, in denen Synchronisation stattfindet, untersucht werden können. Dabei kann festgestellt werden, dass der Grad der Synchronisation mit der Menge an Information in Beziehung steht, die an verschieden Stellen eines Netzwerks gleichzeitig übermittelt wird. Dies kann zur Modellierung der Informationsübertragung über die Synapsen im Gehirn verwendet werden. KW - Synchronisation KW - Netzwerk KW - Phase KW - Information KW - Synchronization KW - Networks KW - Phase KW - Information Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-14347 ER - TY - JOUR A1 - Nagornov, Roman A1 - Osipoy, Grigory A1 - Komarov, Maxim A1 - Pikovskij, Arkadij A1 - Shilnikov, Andrey T1 - Mixed-mode synchronization between two inhibitory neurons with post-inhibitory rebound JF - Communications in nonlinear science & numerical simulation N2 - We study an array of activity rhythms generated by a half-center oscillator (HCO), represented by a pair of reciprocally coupled neurons with post-inhibitory rebounds (PIR). Such coupling induced bursting possesses two time scales, one for fast spiking and another for slow quiescent periods, is shown to exhibit an array of synchronization properties. We discuss several HCO configurations constituted by two endogenous bursters, by tonic-spiking and quiescent neurons, as well as mixed-mode configurations composed of neurons of different type. We demonstrate that burst synchronization can be accompanied by complex, often chaotic, interactions of fast spikes within synchronized bursts. (C) 2015 Elsevier B.V. All rights reserved. KW - Synchronization KW - Hodgkin-Huxley model KW - Half-center oscillator KW - Post-inhibitory rebound Y1 - 2016 U6 - https://doi.org/10.1016/j.cnsns.2015.11.024 SN - 1007-5704 SN - 1878-7274 VL - 36 SP - 175 EP - 191 PB - Elsevier CY - Amsterdam ER - TY - THES A1 - Montbrió i Fairen, Ernest T1 - Synchronization in ensembles of nonisochronous oscillators N2 - Diese Arbeit analysiert Synchronisationsphaenomene, die in grossen Ensembles von interagierenden Oszillatoren auftauchen. Im speziellen werden die Effekte von Nicht-Isochronizitaet (die Abhaengigkeit der Frequenz von der Amplitude des Oszillators) auf den makroskopischen Uebergang zur Synchronisation im Detail studiert. Die neu gefundenen Phaenomene (Anomale Synchronisation) werden sowohl in Populationen von Oszillatoren als auch zwischen Oszillator-Ensembles untersucht. N2 - This thesis analyses synchronization phenomena occurring in large ensembles of interacting oscillatory units. In particular, the effects of nonisochronicity (frequency dependence on the oscillator's amplitude) on the macroscopic transition to synchronization are studied in detail. The new phenomena found (Anomalous Synchronization) are investigated in populations of oscillators as well as between oscillator's ensembles. T2 - Synchronization in ensembles of nonisochronous oscillators KW - Synchronisation KW - Oszillatoren KW - Populationen KW - Anomal KW - Nicht-Isochronizität KW - Synchronization KW - Oscillators KW - Populations KW - Anomalous KW - Nonisochronicity Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-0001492 ER - TY - JOUR A1 - Kuznetsov, Alexander P. A1 - Turukina, Ludmila V. A1 - Chernyshov, Nikolai Yu A1 - Sedova, Yuliya V. T1 - Oscillations and Synchronization in a System of Three Reactively Coupled Oscillators JF - International journal of bifurcation and chaos : in applied sciences and engineering N2 - We consider a system of three interacting van der Pol oscillators with reactive coupling. Phase equations are derived, using proper order of expansion over the coupling parameter. The dynamics of the system is studied by means of the bifurcation analysis and with the method of Lyapunov exponent charts. Essential and physically meaningful features of the reactive coupling are discussed. KW - Synchronization KW - quasi-periodic oscillation KW - bifurcation KW - chaos Y1 - 2016 U6 - https://doi.org/10.1142/S0218127416500103 SN - 0218-1274 SN - 1793-6551 VL - 26 SP - 31 EP - 39 PB - World Scientific CY - Singapore ER - TY - JOUR A1 - Komarov, Maxim A1 - Pikovskij, Arkadij T1 - The Kuramoto model of coupled oscillators with a bi-harmonic coupling function JF - Physica : D, Nonlinear phenomena N2 - We study synchronization in a Kuramoto model of globally coupled phase oscillators with a bi-harmonic coupling function, in the thermodynamic limit of large populations. We develop a method for an analytic solution of self-consistent equations describing uniformly rotating complex order parameters, both for single-branch (one possible state of locked oscillators) and multi-branch (two possible values of locked phases) entrainment. We show that synchronous states coexist with the neutrally linearly stable asynchronous regime. The latter has a finite life time for finite ensembles, this time grows with the ensemble size as a power law. (C) 2014 Elsevier B.V. All rights reserved. KW - Kuramoto model KW - Bi-harmonic coupling function KW - Multi-branch entrainment KW - Synchronization Y1 - 2014 U6 - https://doi.org/10.1016/j.physd.2014.09.002 SN - 0167-2789 SN - 1872-8022 VL - 289 SP - 18 EP - 31 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Huang, Tingwen A1 - Chen, Guanrong A1 - Kurths, Jürgen T1 - Synchronization of chaotic of chaotic systems with time-varying coupöing delays JF - Discrete and continuous dynamical systems : a journal bridging mathematics and sciences ; Series B, Mathematical modelling, analysis and computations N2 - In this paper, we study the complete synchronization of a class of time-varying delayed coupled chaotic systems using feedback control. In terms of Linear Matrix Inequalities, a sufficient condition is obtained through using a Lyapunov-Krasovskii functional and differential equation in equalities. The conditions can be easily verified and implemented. We present two simulation examples to illustrate the effectiveness of the proposed method. KW - Synchronization KW - Chaotic System KW - Time-varying Delay Y1 - 2011 U6 - https://doi.org/10.3934/dcdsb.2011.16.1071 SN - 1531-3492 VL - 16 IS - 4 SP - 1071 EP - 1082 PB - American Institute of Mathematical Sciences CY - Springfield ER - TY - THES A1 - Gong, Chen Chris T1 - Synchronization of coupled phase oscillators BT - theory and modelling BT - Theorie und Modellierung N2 - Oscillatory systems under weak coupling can be described by the Kuramoto model of phase oscillators. Kuramoto phase oscillators have diverse applications ranging from phenomena such as communication between neurons and collective influences of political opinions, to engineered systems such as Josephson Junctions and synchronized electric power grids. This thesis includes the author's contribution to the theoretical framework of coupled Kuramoto oscillators and to the understanding of non-trivial N-body dynamical systems via their reduced mean-field dynamics. The main content of this thesis is composed of four parts. First, a partially integrable theory of globally coupled identical Kuramoto oscillators is extended to include pure higher-mode coupling. The extended theory is then applied to a non-trivial higher-mode coupled model, which has been found to exhibit asymmetric clustering. Using the developed theory, we could predict a number of features of the asymmetric clustering with only information of the initial state provided. The second part consists of an iterated discrete-map approach to simulate phase dynamics. The proposed map --- a Moebius map --- not only provides fast computation of phase synchronization, it also precisely reflects the underlying group structure of the dynamics. We then compare the iterated-map dynamics and various analogous continuous-time dynamics. We are able to replicate known phenomena such as the synchronization transition of the Kuramoto-Sakaguchi model of oscillators with distributed natural frequencies, and chimera states for identical oscillators under non-local coupling. The third part entails a particular model of repulsively coupled identical Kuramoto-Sakaguchi oscillators under common random forcing, which can be shown to be partially integrable. Via both numerical simulations and theoretical analysis, we determine that such a model cannot exhibit stationary multi-cluster states, contrary to the numerical findings in previous literature. Through further investigation, we find that the multi-clustering states reported previously occur due to the accumulation of discretization errors inherent in the integration algorithms, which introduce higher-mode couplings into the model. As a result, the partial integrability condition is violated. Lastly, we derive the microscopic cross-correlation of globally coupled non-identical Kuramoto oscillators under common fluctuating forcing. The effect of correlation arises naturally in finite populations, due to the non-trivial fluctuations of the meanfield. In an idealized model, we approximate the finite-sized fluctuation by a Gaussian white noise. The analytical approximation qualitatively matches the measurements in numerical experiments, however, due to other periodic components inherent in the fluctuations of the mean-field there still exist significant inconsistencies. N2 - Oszillatorische Systeme unter schwacher Kopplung können durch das Kuramoto-Modell beschrieben werden. Kuramoto-Phasenoszillatoren besitzen eine Vielzahl von Modellanwendungsfällen von der Kommunikation zwischen Nervenzellen bis zu kollektiven Einflüssen auf die politische Meinungsbildung sowie ingenieurwissenschaftlichen Anwendungen wie Josephson-Kontakten und synchronisierten elektrischen Übertragungsnetzen. In dieser Dissertation werden die Beiträge der Autorin zur Theorie der Kuramoto-Oszillatorensysteme und zum Verständnis nichttrivialer dynamischer NKörpersysteme durch die Analyse ihrer reduzierten Mittelfelddynamik zusammengefasst. Der Hauptinhalt dieser Dissertation umfasst vier Teile: Zuerst wird eine teilweise integrable Theorie global gekoppelter, identischer Kuramoto-Oszillatoren so erweitert, dass sie auch den Fall reiner Phasenkopplung höherer Ordnung umfasst. Die erweiterte Theorie wird anschließend auf ein nichttriviales Modell mit harmonischer Kopplung höherer Ordnung angewendet, welches asymmetrisches Clustering aufweist. Die Theorie sagt rein auf Basis der Anfangssystembedingungen einige Eigenschaften des asymmetrischen Clustering erfolgreich voraus. Im zweiten Teil wird die Phasendynamik von Kuramoto-Oszillatoren mithilfe einer iterierten diskreten Abbildung simuliert. Diese Abbildung – eine Möbius-Abbildung – erlaubt nicht nur eine schnelle Berechnung der Phasensynchronisation sondern spiegelt die zugrundeliegende Gruppenstruktur der Phasendynamik auch exakt wieder. Die Dynamik der iterierten Abbildung wird mit verschiedenen analogen Dynamiken mit kontinuierlicher Zeitachse verglichen. Hierbei werden bekannte Phänomene, wie etwa der Phasenübergang im Kuramoto-Sakaguchi-Oszillatormodell mit einer Verteilung der natürlichen Frequenzen und “Chimärenzustände” (chimera states) bei identischen Oszillatoren nichtlokalen Kopplungstypen, repliziert. Im dritten Teil wird ein Modell von repulsiv gekoppelten, identischen, gemeinsam stochastisch getriebenen Kuramoto-Sakaguchi-Oszillatoren beschrieben, dass teilweise integrabel ist. Sowohl durch numerische Simulationen als auch theoretische Analyse wird gezeigt, dass dieses Modell keine stationären Multi-Cluster-Zustände einnehmen kann, was den Ergebnissen anderer numerischer Studien in der Literatur widerspricht. Durch eine weitergehende Analyse wird gezeigt, dass das scheinbare Auftreten von Multi-Cluster-Zuständen der Akkumulation von inhärenten Diskretisierungsfehlern der verwendeten Integrationsalgorithmen zuzuschreiben ist, welche dem Modell Phasenkopplungen höher Ordnung hinzufügen. Als Resultat dieser Effekte wird die Bedingung der teilweisen Integrabilität verletzt. Zuletzt wird die mikroskopische Kreuzkorrelation zwischen global gekoppelten, nicht identischen gemeinsam fluktuierend getriebenen Kuramoto-Oszillatoren hergeleitet. Der Korrelationseffekt entsteht auf natürliche Art und Weise in endlichen Populationen aufgrund der nichttrivialen Fluktuation des Mittelfelds. Die endliche Fluktuation wird in einem idealisierten Modell mittels gaußschem weißem Rauschen approximiert. Die analytische Annährung stimmt mit den Ergebnissen numerischer Simulationen gut überein, die inhärenten periodischen Komponenten der Fluktuation des Mittelfels verursachen allerdings trotzdem signifikante Inkonsistenzen. T2 - Synchronisation der gekoppelten Oszillatoren KW - Synchronization KW - Nonlinear Dynamics KW - Nichtlineare Dynamik KW - Synchronisation KW - Kuramoto Oscillators KW - Kuramoto-Oszillatore KW - Complex Network KW - Komplexes Netzwerk Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-487522 ER - TY - THES A1 - Goldobin, Denis S. T1 - Coherence and synchronization of noisy-driven oscillators T1 - Kohärenz und Synchronisation verrauschter Oszillatoren N2 - In the present dissertation paper we study problems related to synchronization phenomena in the presence of noise which unavoidably appears in real systems. One part of the work is aimed at investigation of utilizing delayed feedback to control properties of diverse chaotic dynamic and stochastic systems, with emphasis on the ones determining predisposition to synchronization. Other part deals with a constructive role of noise, i.e. its ability to synchronize identical self-sustained oscillators. First, we demonstrate that the coherence of a noisy or chaotic self-sustained oscillator can be efficiently controlled by the delayed feedback. We develop the analytical theory of this effect, considering noisy systems in the Gaussian approximation. Possible applications of the effect for the synchronization control are also discussed. Second, we consider synchrony of limit cycle systems (in other words, self-sustained oscillators) driven by identical noise. For weak noise and smooth systems we proof the purely synchronizing effect of noise. For slightly different oscillators and/or slightly nonidentical driving, synchrony becomes imperfect, and this subject is also studied. Then, with numerics we show moderate noise to be able to lead to desynchronization of some systems under certain circumstances. For neurons the last effect means “antireliability” (the “reliability” property of neurons is treated to be important from the viewpoint of information transmission functions), and we extend our investigation to neural oscillators which are not always limit cycle ones. Third, we develop a weakly nonlinear theory of the Kuramoto transition (a transition to collective synchrony) in an ensemble of globally coupled oscillators in presence of additional time-delayed coupling terms. We show that a linear delayed feedback not only controls the transition point, but effectively changes the nonlinear terms near the transition. A purely nonlinear delayed coupling does not affect the transition point, but can reduce or enhance the amplitude of collective oscillations. N2 - In dieser Dissertation werden Synchronisationsphänomene im Vorhandensein von Rauschen studiert. Ein Ziel dieser Arbeit besteht in der Untersuchung der Anwendbarkeit verzögerter Rückkopplung zur Kontrolle von bestimmten Eigenschaften chaotischer oder stochastischer Systeme. Der andere Teil beschäftigt sich mit den konstruktiven Eigenschaften von Rauschen. Insbesondere wird die Möglichkeit, identische selbsterregte Oszillatoren zu synchronisieren untersucht. Als erstes wird gezeigt, dass Kohärenz verrauschter oder chaotischer Oszillatoren durch verzögertes Rückkoppeln kontrolliert werden kann. Es wird eine analytische Beschreibung dieses Phänomens in verrauschten Systemen entwickelt. Außerdem werden mögliche Anwendungen im Zusammenhang mit Synchronisationskontrolle vorgestellt und diskutiert. Als zweites werden Oszillatoren unter dem Einfluss von identischem Rauschen betrachtet. Für schwaches Rauschen und genügend glatte Systeme wird bewiesen, das Rauschen zu Synchronisation führt. Für leicht unterschiedliche Oszillatoren und leicht unterschiedliches Rauschen wird die Synchronisation unvollständig. Dieser Effekt wird auch untersucht. Dann wird mit Hilfe von Numerik gezeigt, dass moderates Rauschen zur Desynchronisierung von bestimmten Systemen führen kann. Dieser Effekt wird auch in neuronalen Oszillatoren untersucht, welche nicht unbedingt Grenzzyklen besitzen müssen. Im dritten Teil wird eine schwache nichtlineare Theorie des Kuramoto-Übergangs, dem Übergang zur kollektiven Synchronisation, in einem Ensemble von global gekoppelten Oszillatoren mit zusätzlichen zeitverzögerten Kopplungstermen entwickelt. Es wird gezeigt, dass lineare Rückkopplung nicht nur den Übergangspunkt bestimmt, sondern auch die nichtlinearen Terme in der Nähe des Übergangs entscheidend verändert. Eine rein nichtlineare Rückkopplung verändert den Übergang nicht, kann aber die Amplitude der kollektiven Oszillationen vergrößern oder verringern. KW - Rauschen KW - Chaos KW - Phasendiffusion KW - Neuronsreliabilität KW - Synchronisation KW - Noise KW - Chaos KW - Phase Diffusion KW - Reliability of Neurons KW - Synchronization Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-15047 ER - TY - JOUR A1 - Boers, Niklas A1 - Bookhagen, Bodo A1 - Marwan, Norbert A1 - Kurths, Jürgen T1 - Spatiotemporal characteristics and synchronization of extreme rainfall in South America with focus on the Andes Mountain range JF - Climate dynamics : observational, theoretical and computational research on the climate system N2 - The South American Andes are frequently exposed to intense rainfall events with varying moisture sources and precipitation-forming processes. In this study, we assess the spatiotemporal characteristics and geographical origins of rainfall over the South American continent. Using high-spatiotemporal resolution satellite data (TRMM 3B42 V7), we define four different types of rainfall events based on their (1) high magnitude, (2) long temporal extent, (3) large spatial extent, and (4) high magnitude, long temporal and large spatial extent combined. In a first step, we analyze the spatiotemporal characteristics of these events over the entire South American continent and integrate their impact for the main Andean hydrologic catchments. Our results indicate that events of type 1 make the overall highest contributions to total seasonal rainfall (up to 50%). However, each consecutive episode of the infrequent events of type 4 still accounts for up to 20% of total seasonal rainfall in the subtropical Argentinean plains. In a second step, we employ complex network theory to unravel possibly non-linear and long-ranged climatic linkages for these four event types on the high-elevation Altiplano-Puna Plateau as well as in the main river catchments along the foothills of the Andes. Our results suggest that one to two particularly large squall lines per season, originating from northern Brazil, indirectly trigger large, long-lasting thunderstorms on the Altiplano Plateau. In general, we observe that extreme rainfall in the catchments north of approximately 20 degrees S typically originates from the Amazon Basin, while extreme rainfall at the eastern Andean foothills south of 20 degrees S and the Puna Plateau originates from southeastern South America. KW - Extreme rainfall KW - Synchronization KW - Complex networks KW - South American monsoon system Y1 - 2016 U6 - https://doi.org/10.1007/s00382-015-2601-6 SN - 0930-7575 SN - 1432-0894 VL - 46 SP - 601 EP - 617 PB - Springer CY - New York ER -