TY - JOUR A1 - Schönfeldt, Elisabeth A1 - Pánek, Tomáš A1 - Winocur, Diego A1 - Silhan, Karel A1 - Korup, Oliver T1 - Postglacial Patagonian mass movement BT - from rotational slides and spreads to earthflows JF - Geomorphology : an international journal on pure and applied geomorphology N2 - Many of the volcanic plateau margins of the eastern, formerly glaciated, foreland of the Patagonian Andes are undermined by giant landslides (>= 10(8) m(3)). One cluster of such landslides extends along the margin of the Meseta del Lago Buenos Aires (MLBA) plateau that is formed mainly by Neogene-Quaternary basalts. The dry climate is at odds with numerous >2-km long earthflows nested within older and larger compound landslides. We present a hydrological analysis, a detailed geomorphic map, interpretations of exposed landslide interiors, and radiocarbon dating of the El Mirador landslide, which is one of the largest and morphologically most representative landslide. We find that the presence of lakes on top of the plateau, causing low infiltration rates, correlates negatively with the abundance of earthflows on compound landslides along the plateau margins. Field outcrops show that the pattern of compound landslides and earthflows is likely controlled by groundwater seepage at the contact between the basalts and underlying soft Miocene molasse. Numerous peat bogs store water and sediment and are more abundant in earthflow-affected areas than in their contributing catchment areas.
Radiocarbon dates indicate that these earthflows displaced metre-thick layers of peat in the late Holocene (<2.5 ka). We conclude that earthflows of the MLBA plateau might be promising proxies of past hydroclimatic conditions in the Patagonian foreland, if strong earthquakes or gradual crustal stress changes due to glacioisostatic rebound can be ruled out. KW - landslide KW - lateral spread KW - earthflow KW - Patagonia Y1 - 2020 U6 - https://doi.org/10.1016/j.geomorph.2020.107316 SN - 0169-555X SN - 1872-695X VL - 367 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Mohr, Christian Heinrich A1 - Korup, Oliver A1 - Ulloa, Hector A1 - Iroume, Andres T1 - Pyroclastic Eruption Boosts Organic Carbon Fluxes Into Patagonian Fjords JF - Global biogeochemical cycles N2 - Fjords and old-growth forests store large amounts of organic carbon. Yet the role of episodic disturbances, particularly volcanic eruptions, in mobilizing organic carbon in fjord landscapes covered by temperate rainforests remains poorly quantified. To this end, we estimated how much wood and soils were flushed to nearby fjords following the 2008 eruption of Chaiten volcano in south-central Chile, where pyroclastic sediments covered >12km(2) of pristine temperate rainforest. Field-based surveys of forest biomass, soil organic content, and dead wood transport reveal that the reworking of pyroclastic sediments delivered similar to 66,500+14,600/-14,500tC of large wood to two rivers entering the nearby Patagonian fjords in less than a decade. A similar volume of wood remains in dead tree stands and buried beneath pyroclastic deposits (similar to 79,900+21,100/-16,900tC) or stored in active river channels (5,900-10,600tC). We estimate that bank erosion mobilized similar to 132,300(+21,700)/(-30,600)tC of floodplain forest soil. Eroded and reworked forest soils have been accreting on coastal river deltas at >5mmyr(-1) since the eruption. While much of the large wood is transported out of the fjord by long-shore drift, the finer fraction from eroded forest soils is likely to be buried in the fjords. We conclude that the organic carbon fluxes boosted by rivers adjusting to high pyroclastic sediment loads may remain elevated for up to a decade and that Patagonian temperate rainforests disturbed by excessive loads of pyroclastic debris can be episodic short-lived carbon sources. Plain Language Summary Fjords and old-growth forests are important sinks of organic carbon. However, the role of volcanic eruptions in flushing organic carbon in fjord landscapes remains unexplored. Here we estimated how much forest vegetation and soils were lost to fjords following the 2008 eruption ofunknownChaiten volcano in south-central Chile. Pyroclastic sediments obliterated near-pristine temperateunknownrainforest, and the subsequent reworking of these sediments delivered in less than a decade similar to 66,000 tC of large wood to the mountain rivers, draining into the nearby Patagonian fjords. A similar volume of wood remains in dead tree stands and buried beneath pyroclastic deposits or stored in active riverunknownchannels. We estimate that similar to 130,000 tC of organic carbon-rich soil was lost to erosion, thus adding to the carbon loads. While much of the wood enters the long-shore drift in the fjord heads, the finerunknownfraction from eroded forest soils is likely to be buried in the fjords at rates that exceed regional estimates by an order of magnitude. We anticipate that these eruption-driven fluxes will remain elevated forunknownthe coming years and that Patagonian temperate rainforests episodically switch from carbon sinks to hitherto undocumented carbon sources if disturbed by explosive volcanic eruptions. KW - Chile KW - Patagonia KW - rainforest KW - volcanic eruption KW - organic carbon KW - biomass Y1 - 2017 U6 - https://doi.org/10.1002/2017GB005647 SN - 0886-6236 SN - 1944-9224 VL - 31 SP - 1626 EP - 1638 PB - American Geophysical Union CY - Washington ER -