TY - THES A1 - Zeitz, Maria T1 - Modeling the future resilience of the Greenland Ice Sheet T1 - Numerische Modellierung der zukünftigen Resilienz des grönländischen Eisschildes BT - from the flow of ice to the interplay of feedbacks N2 - The Greenland Ice Sheet is the second-largest mass of ice on Earth. Being almost 2000 km long, more than 700 km wide, and more than 3 km thick at the summit, it holds enough ice to raise global sea levels by 7m if melted completely. Despite its massive size, it is particularly vulnerable to anthropogenic climate change: temperatures over the Greenland Ice Sheet have increased by more than 2.7◦C in the past 30 years, twice as much as the global mean temperature. Consequently, the ice sheet has been significantly losing mass since the 1980s and the rate of loss has increased sixfold since then. Moreover, it is one of the potential tipping elements of the Earth System, which might undergo irreversible change once a warming threshold is exceeded. This thesis aims at extending the understanding of the resilience of the Greenland Ice Sheet against global warming by analyzing processes and feedbacks relevant to its centennial to multi-millennial stability using ice sheet modeling. One of these feedbacks, the melt-elevation-feedback is driven by the temperature rise with decreasing altitudes: As the ice sheet melts, its thickness and surface elevation decrease, exposing the ice surface to warmer air and thus increasing the melt rates even further. The glacial isostatic adjustment (GIA) can partly mitigate this melt-elevation feedback as the bedrock lifts in response to an ice load decrease, forming the negative GIA feedback. In my thesis, I show that the interaction between these two competing feedbacks can lead to qualitatively different dynamical responses of the Greenland Ice Sheet to warming – from permanent loss to incomplete recovery, depending on the feedback parameters. My research shows that the interaction of those feedbacks can initiate self-sustained oscillations of the ice volume while the climate forcing remains constant. Furthermore, the increased surface melt changes the optical properties of the snow or ice surface, e.g. by lowering their albedo, which in turn enhances melt rates – a process known as the melt-albedo feedback. Process-based ice sheet models often neglect this melt-albedo feedback. To close this gap, I implemented a simplified version of the diurnal Energy Balance Model, a computationally efficient approach that can capture the first-order effects of the melt-albedo feedback, into the Parallel Ice Sheet Model (PISM). Using the coupled model, I show in warming experiments that the melt-albedo feedback almost doubles the ice loss until the year 2300 under the low greenhouse gas emission scenario RCP2.6, compared to simulations where the melt-albedo feedback is neglected, and adds up to 58% additional ice loss under the high emission scenario RCP8.5. Moreover, I find that the melt-albedo feedback dominates the ice loss until 2300, compared to the melt-elevation feedback. Another process that could influence the resilience of the Greenland Ice Sheet is the warming induced softening of the ice and the resulting increase in flow. In my thesis, I show with PISM how the uncertainty in Glen’s flow law impacts the simulated response to warming. In a flow line setup at fixed climatic mass balance, the uncertainty in flow parameters leads to a range of ice loss comparable to the range caused by different warming levels. While I focus on fundamental processes, feedbacks, and their interactions in the first three projects of my thesis, I also explore the impact of specific climate scenarios on the sea level rise contribution of the Greenland Ice Sheet. To increase the carbon budget flexibility, some warming scenarios – while still staying within the limits of the Paris Agreement – include a temporal overshoot of global warming. I show that an overshoot by 0.4◦C increases the short-term and long-term ice loss from Greenland by several centimeters. The long-term increase is driven by the warming at high latitudes, which persists even when global warming is reversed. This leads to a substantial long-term commitment of the sea level rise contribution from the Greenland Ice Sheet. Overall, in my thesis I show that the melt-albedo feedback is most relevant for the ice loss of the Greenland Ice Sheet on centennial timescales. In contrast, the melt-elevation feedback and its interplay with the GIA feedback become increasingly relevant on millennial timescales. All of these influence the resilience of the Greenland Ice Sheet against global warming, in the near future and on the long term. N2 - Das grönländische Eisschild ist die zweitgrößte Eismasse der Erde. Es fasst genug Eis, um den globalen Meeresspiegel um 7m anzuheben, wenn er vollständig schmilzt. Trotz seiner Größe ist es durch den vom Menschen verursachten Klimawandel immens gefährdet: Die Temperaturen über Grönland sind in den letzten 30 Jahren um mehr als 2,7◦C gestiegen, doppelt so stark wie im globalen Mittel. Daher verliert das Eisschild seit den 1980er Jahren an Masse und die Verlustrate hat sich seitdem versechsfacht. Zudem ist das grönländische Eisschild ein Kippelement des Erdsystems, es könnte sich unwiederbringlich verändern, wenn die globale Erwärmung einen Schwellwert überschreiten sollte. Ziel dieser Arbeit ist es, das Verständnis für die Resilienz des grönländischen Eisschildes zu erweitern, indem relevante Rückkopplungen und Prozesse analysiert werden. Eine dieser Rückkopplungen, die positive Schmelz-Höhen-Rückkopplung wird durch den Temperaturanstieg bei abnehmender Höhe angetrieben: Wenn der Eisschild schmilzt, nehmen seine Dicke und die Oberflächenhöhe ab, wodurch die Eisoberfläche wärmerer Luft ausgesetzt wird und die Schmelzraten noch weiter ansteigen. Die glaziale isostatische Anpassung (GIA) kann die Schmelz-Höhen-Rückkopplung teilweise abschwächen, da sich der Erdmantel als Reaktion auf die abnehmende Eislast hebt und so die negative GIA-Rückkopplung bildet. Ich zeige, dass die Interaktion zwischen diesen beiden konkurrierenden Rückkopplungen zu qualitativ unterschiedlichem dynamischen Verhalten des grönländischen Eisschildes bei Erwärmung führen kann - von permanentem Verlust bis hin zu unvollständiger Erholung. Das Zusammenspiel dieser Rückkopplungen kann zudem Oszillationen des Eisvolumens in einem konstanten Klima auslösen. Die verstärkte Oberflächenschmelze ändert die optischen Eigenschaften von Schnee und Eis und verringert deren Albedo, was wiederum die Schmelzraten erhöht – die sogenannte Schmelz-Albedo Rückkopplung. Da viele Eisschildmodelle diese vernachlässigen, habe ich eine vereinfachte Version des tageszeitlichen Energiebilanzmodells, welches die Effekte der Schmelz-Albedo-Rückkopplung erster Ordnung erfassen kann, in das Eisschildmodell PISM implementiert. Mithilfe des gekoppelten Modells zeige ich, dass die Schmelz-Albedo-Rückkopplung den Eisverlust bis zum Jahr 2300 im moderaten Klimaszenario RCP2.6 fast verdoppelt und im RCP8.5-Szenario, welches von starken Emissionen ausgeht, bis zu 58% zusätzlichen Eisverlust verursacht, im Vergleich zu Simulationen in denen die Schmelz-Albedo-Rückkopplung vernachlässigt wird. Bis zum Jahr 2300 trägt die Schmelz-Albedo-Rückkopplung mehr zum Eisverlust bei als die Schmelz-Höhen-Rückkopplung. Ein weiterer Prozess, der die Widerstandsfähigkeit des grönländischen Eisschilds beeinflussen könnte, ist die Erweichung des Eises bei steigenden Temperaturen, sowie die daraus resultierende Zunahme des Eisflusses. In meiner Dissertation zeige ich, wie sich die parametrische Unsicherheit in dem Flussgesetz auf die Ergebnisse von PISM Simulationen bei Erwärmung auswirkt. In einem idealisierten, zweidimensionalen Experiment mit fester klimatischer Massenbilanz führt die Unsicherheit in den Strömungsparametern zu einer Bandbreite des Eisverlustes, die mit der Bandbreite durch unterschiedliche Erwärmungen vergleichbar ist. Neben den grundsätzlichen Prozessen und Rückkopplungen untersuchte ich auch die Auswirkungen konkreter Klimaszenarien auf den Eisverlust von Grönland. Um die Flexibilität des Kohlenstoffbudgets zu erhöhen sehen einige Erwärmungsszenarien eine temporäre Überschreitung der globalen Temperaturen über das Ziel von 1,5◦C vor. Ich zeige, dass eine solche Temperaturerhöhung den kurz- und langfristigen Eisverlust von Grönland um mehrere Zentimeter erhöht. Der langfristige Meeresspiegelanstieg ist auf die anhaltende Temperaturerhöhung in hohen Breitengraden zurückzuführen. Solche Prozesse führen zu einem langfristigen und bereits festgelegtem Meeresspiegelanstieg, selbst wenn die Temperaturen nicht weiter steigen. Insgesamt zeige ich in meiner Arbeit, dass die Schmelz-Albedo-Rückkopplung für den Eisverlust des grönländischen Eisschilds in den nächsten Jahrhunderten am wichtigsten ist. Im Gegensatz dazu werden die Schmelz-Höhen-Rückkopplung und ihr Zusammenspiel mit der GIA-Rückkopplung auf längeren Zeiträumen immer relevanter. KW - Greenland Ice Sheet KW - ice-flow modeling KW - sea-level rise KW - Grönländisches Eisschild KW - Computersimulation KW - Meeresspiegelanstieg Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-568839 ER - TY - JOUR A1 - Strauss, Benjamin H. A1 - Kulp, Scott A1 - Levermann, Anders T1 - Carbon choices determine US cities committed to futures below sea level JF - Proceedings of the National Academy of Sciences of the United States of America N2 - Anthropogenic carbon emissions lock in long-term sea-level rise that greatly exceeds projections for this century, posing profound challenges for coastal development and cultural legacies. Analysis based on previously published relationships linking emissions to warming and warming to rise indicates that unabated carbon emissions up to the year 2100 would commit an eventual global sea-level rise of 4.3-9.9 m. Based on detailed topographic and population data, local high tide lines, and regional long-term sea-level commitment for different carbon emissions and ice sheet stability scenarios, we compute the current population living on endangered land at municipal, state, and national levels within the United States. For unabated climate change, we find that land that is home to more than 20 million people is implicated and is widely distributed among different states and coasts. The total area includes 1,185-1,825 municipalities where land that is home to more than half of the current population would be affected, among them at least 21 cities exceeding 100,000 residents. Under aggressive carbon cuts, more than half of these municipalities would avoid this commitment if the West Antarctic Ice Sheet remains stable. Similarly, more than half of the US population-weighted area under threat could be spared. We provide lists of implicated cities and state populations for different emissions scenarios and with and without a certain collapse of the West Antarctic Ice Sheet. Although past anthropogenic emissions already have caused sea-level commitment that will force coastal cities to adapt, future emissions will determine which areas we can continue to occupy or may have to abandon. KW - climate change KW - climate impacts KW - sea-level rise Y1 - 2015 U6 - https://doi.org/10.1073/pnas.1511186112 SN - 0027-8424 VL - 112 IS - 44 SP - 13508 EP - 13513 PB - National Acad. of Sciences CY - Washington ER - TY - GEN A1 - Schleussner, Carl-Friedrich A1 - Lissner, Tabea Katharina A1 - Fischer, Erich M. A1 - Wohland, Jan A1 - Perrette, Mahé A1 - Golly, Antonius A1 - Rogelj, Joeri A1 - Childers, Katelin A1 - Schewe, Jacob A1 - Frieler, Katja A1 - Mengel, Matthias A1 - Hare, William A1 - Schaeffer, Michiel T1 - Differential climate impacts for policy-relevant limits to global warming BT - the case of 1.5 °C and 2 °C T2 - Earth System Dynamics N2 - Robust appraisals of climate impacts at different levels of global-mean temperature increase are vital to guide assessments of dangerous anthropogenic interference with the climate system. The 2015 Paris Agreement includes a two-headed temperature goal: "holding the increase in the global average temperature to well below 2 degrees C above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5 degrees C". Despite the prominence of these two temperature limits, a comprehensive overview of the differences in climate impacts at these levels is still missing. Here we provide an assessment of key impacts of climate change at warming levels of 1.5 degrees C and 2 degrees C, including extreme weather events, water availability, agricultural yields, sea-level rise and risk of coral reef loss. Our results reveal substantial differences in impacts between a 1.5 degrees C and 2 degrees C warming that are highly relevant for the assessment of dangerous anthropogenic interference with the climate system. For heat-related extremes, the additional 0.5 degrees C increase in global-mean temperature marks the difference between events at the upper limit of present-day natural variability and a new climate regime, particularly in tropical regions. Similarly, this warming difference is likely to be decisive for the future of tropical coral reefs. In a scenario with an end-of-century warming of 2 degrees C, virtually all tropical coral reefs are projected to be at risk of severe degradation due to temperature-induced bleaching from 2050 onwards. This fraction is reduced to about 90% in 2050 and projected to decline to 70% by 2100 for a 1.5 degrees C scenario. Analyses of precipitation-related impacts reveal distinct regional differences and hot-spots of change emerge. Regional reduction in median water availability for the Mediterranean is found to nearly double from 9% to 17% between 1.5 degrees C and 2 degrees C, and the projected lengthening of regional dry spells increases from 7 to 11%. Projections for agricultural yields differ between crop types as well as world regions. While some (in particular high-latitude) regions may benefit, tropical regions like West Africa, South-East Asia, as well as Central and northern South America are projected to face substantial local yield reductions, particularly for wheat and maize. Best estimate sea-level rise projections based on two illustrative scenarios indicate a 50cm rise by 2100 relative to year 2000-levels for a 2 degrees C scenario, and about 10 cm lower levels for a 1.5 degrees C scenario. In a 1.5 degrees C scenario, the rate of sea-level rise in 2100 would be reduced by about 30% compared to a 2 degrees C scenario. Our findings highlight the importance of regional differentiation to assess both future climate risks and different vulnerabilities to incremental increases in global-mean temperature. The article provides a consistent and comprehensive assessment of existing projections and a good basis for future work on refining our understanding of the difference between impacts at 1.5 degrees C and 2 degrees C warming. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 426 KW - sea-level rise KW - Greenland ice-sheet KW - coral-reefs KW - precipitation extremes KW - West Antarctica KW - pine Island KW - model KW - projections KW - temperature KW - scenarios Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-410258 ER - TY - GEN A1 - Prahl, Boris F. A1 - Rybski, Diego A1 - Boettle, Markus A1 - Kropp, Jürgen T1 - Damage functions for climate-related hazards BT - unification and uncertainty analysis T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Most climate change impacts manifest in the form of natural hazards. Damage assessment typically relies on damage functions that translate the magnitude of extreme events to a quantifiable damage. In practice, the availability of damage functions is limited due to a lack of data sources and a lack of understanding of damage processes. The study of the characteristics of damage functions for different hazards could strengthen the theoretical foundation of damage functions and support their development and validation. Accordingly, we investigate analogies of damage functions for coastal flooding and for wind storms and identify a unified approach. This approach has general applicability for granular portfolios and may also be applied, for example, to heat-related mortality. Moreover, the unification enables the transfer of methodology between hazards and a consistent treatment of uncertainty. This is demonstrated by a sensitivity analysis on the basis of two simple case studies (for coastal flood and storm damage). The analysis reveals the relevance of the various uncertainty sources at varying hazard magnitude and on both the microscale and the macroscale level. Main findings are the dominance of uncertainty from the hazard magnitude and the persistent behaviour of intrinsic uncertainties on both scale levels. Our results shed light on the general role of uncertainties and provide useful insight for the application of the unified approach. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 534 KW - coastal flood damage KW - sea-level rise KW - of-the-art KW - sensitivity-analysis KW - natural hazards KW - storm damage KW - model KW - wind KW - vulnerability KW - buildings Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-410184 SN - 1866-8372 IS - 534 ER - TY - GEN A1 - Prahl, Boris F. A1 - Boettle, Markus A1 - Costa, Luís Fílípe Carvalho da A1 - Kropp, Jürgen A1 - Rybski, Diego T1 - Damage and protection cost curves for coastal floods within the 600 largest European cities T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The economic assessment of the impacts of storm surges and sea-level rise in coastal cities requires high-level information on the damage and protection costs associated with varying flood heights. We provide a systematically and consistently calculated dataset of macroscale damage and protection cost curves for the 600 largest European coastal cities opening the perspective for a wide range of applications. Offering the first comprehensive dataset to include the costs of dike protection, we provide the underpinning information to run comparative assessments of costs and benefits of coastal adaptation. Aggregate cost curves for coastal flooding at the city-level are commonly regarded as by-products of impact assessments and are generally not published as a standalone dataset. Hence, our work also aims at initiating a more critical discussion on the availability and derivation of cost curves. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 938 KW - sea-level rise KW - topographic data KW - climate-change KW - adaptation KW - scale KW - exposure KW - model Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-459672 SN - 1866-8372 IS - 938 ER - TY - JOUR A1 - Marzeion, Ben A1 - Levermann, Anders T1 - Loss of cultural world heritage and currently inhabited places to sea-level rise JF - Environmental research letters KW - sea-level rise KW - cultural heritage KW - chlimate impacts Y1 - 2014 U6 - https://doi.org/10.1088/1748-9326/9/3/034001 SN - 1748-9326 VL - 9 IS - 3 PB - IOP Publ. Ltd. CY - Bristol ER - TY - GEN A1 - Levermann, Anders A1 - Winkelmann, Ricarda T1 - A simple equation for the melt elevation feedback of ice sheets T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - In recent decades, the Greenland Ice Sheet has been losing mass and has thereby contributed to global sea-level rise. The rate of ice loss is highly relevant for coastal protection worldwide. The ice loss is likely to increase under future warming. Beyond a critical temperature threshold, a meltdown of the Greenland Ice Sheet is induced by the self-enforcing feedback between its lowering surface elevation and its increasing surface mass loss: the more ice that is lost, the lower the ice surface and the warmer the surface air temperature, which fosters further melting and ice loss. The computation of this rate so far relies on complex numerical models which are the appropriate tools for capturing the complexity of the problem. By contrast we aim here at gaining a conceptual understanding by deriving a purposefully simple equation for the self-enforcing feedback which is then used to estimate the melt time for different levels of warming using three observable characteristics of the ice sheet itself and its surroundings. The analysis is purely conceptual in nature. It is missing important processes like ice dynamics for it to be useful for applications to sea-level rise on centennial timescales, but if the volume loss is dominated by the feedback, the resulting logarithmic equation unifies existing numerical simulations and shows that the melt time depends strongly on the level of warming with a critical slow-down near the threshold: the median time to lose 10% of the present-day ice volume varies between about 3500 years for a temperature level of 0.5 degrees C above the threshold and 500 years for 5 degrees C. Unless future observations show a significantly higher melting sensitivity than currently observed, a complete meltdown is unlikely within the next 2000 years without significant ice-dynamical contributions. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 529 KW - sea-level rise KW - mass-balance KW - climate-change KW - Greenland KW - model KW - glacier KW - projections KW - dynamics KW - impact KW - 21st-Century Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-409834 SN - 1866-8372 IS - 529 ER - TY - JOUR A1 - Feldmann, Johannes A1 - Levermann, Anders T1 - Collapse of the West Antarctic Ice Sheet after local destabilization of the Amundsen Basin JF - Proceedings of the National Academy of Sciences of the United States of America N2 - The future evolution of the Antarctic Ice Sheet represents the largest uncertainty in sea-level projections of this and upcoming centuries. Recently, satellite observations and high-resolution simulations have suggested the initiation of an ice-sheet instability in the Amundsen Sea sector of West Antarctica, caused by the last decades' enhanced basal ice-shelf melting. Whether this localized destabilization will yield a full discharge of marine ice from West Antarctica, associated with a global sea-level rise of more than 3 m, or whether the ice loss is limited by ice dynamics and topographic features, is unclear. Here we show that in the Parallel Ice Sheet Model, a local destabilization causes a complete disintegration of the marine ice in West Antarctica. In our simulations, at 5-km horizontal resolution, the region disequilibrates after 60 y of currently observed melt rates. Thereafter, the marine ice-sheet instability fully unfolds and is not halted by topographic features. In fact, the ice loss in Amundsen Sea sector shifts the catchment's ice divide toward the Filchner-Ronne and Ross ice shelves, which initiates grounding-line retreat there. Our simulations suggest that if a destabilization of Amundsen Sea sector has indeed been initiated, Antarctica will irrevocably contribute at least 3 m to global sea-level rise during the coming centuries to millennia. KW - West Antarctic Ice Sheet KW - sea-level rise KW - tipping point KW - instability KW - marine ice-sheet instability Y1 - 2015 U6 - https://doi.org/10.1073/pnas.1512482112 SN - 0027-8424 VL - 112 IS - 46 SP - 14191 EP - 14196 PB - National Acad. of Sciences CY - Washington ER - TY - THES A1 - Böttle, Markus T1 - Coastal floods in view of sea level rise T1 - Küstenfluten im Hinblick auf steigende Meeresspiegel BT - assessing damage costs and adaptation measures BT - Abschätzung von Schadenskosten und Anpassungsmaßnahmen N2 - The sea level rise induced intensification of coastal floods is a serious threat to many regions in proximity to the ocean. Although severe flood events are rare they can entail enormous damage costs, especially when built-up areas are inundated. Fortunately, the mean sea level advances slowly and there is enough time for society to adapt to the changing environment. Most commonly, this is achieved by the construction or reinforcement of flood defence measures such as dykes or sea walls but also land use and disaster management are widely discussed options. Overall, albeit the projection of sea level rise impacts and the elaboration of adequate response strategies is amongst the most prominent topics in climate impact research, global damage estimates are vague and mostly rely on the same assessment models. The thesis at hand contributes to this issue by presenting a distinctive approach which facilitates large scale assessments as well as the comparability of results across regions. Moreover, we aim to improve the general understanding of the interplay between mean sea level rise, adaptation, and coastal flood damage. Our undertaking is based on two basic building blocks. Firstly, we make use of macroscopic flood-damage functions, i.e. damage functions that provide the total monetary damage within a delineated region (e.g. a city) caused by a flood of certain magnitude. After introducing a systematic methodology for the automatised derivation of such functions, we apply it to a total of 140 European cities and obtain a large set of damage curves utilisable for individual as well as comparative damage assessments. By scrutinising the resulting curves, we are further able to characterise the slope of the damage functions by means of a functional model. The proposed function has in general a sigmoidal shape but exhibits a power law increase for the relevant range of flood levels and we detect an average exponent of 3.4 for the considered cities. This finding represents an essential input for subsequent elaborations on the general interrelations of involved quantities. The second basic element of this work is extreme value theory which is employed to characterise the occurrence of flood events and in conjunction with a damage function provides the probability distribution of the annual damage in the area under study. The resulting approach is highly flexible as it assumes non-stationarity in all relevant parameters and can be easily applied to arbitrary regions, sea level, and adaptation scenarios. For instance, we find a doubling of expected flood damage in the city of Copenhagen for a rise in mean sea levels of only 11 cm. By following more general considerations, we succeed in deducing surprisingly simple functional expressions to describe the damage behaviour in a given region for varying mean sea levels, changing storm intensities, and supposed protection levels. We are thus able to project future flood damage by means of a reduced set of parameters, namely the aforementioned damage function exponent and the extreme value parameters. Similar examinations are carried out to quantify the aleatory uncertainty involved in these projections. In this regard, a decrease of (relative) uncertainty with rising mean sea levels is detected. Beyond that, we demonstrate how potential adaptation measures can be assessed in terms of a Cost-Benefit Analysis. This is exemplified by the Danish case study of Kalundborg, where amortisation times for a planned investment are estimated for several sea level scenarios and discount rates. N2 - Viele Regionen in Küstennähe sehen sich durch den Anstieg des mittleren Meeresspiegels einer erhöhten Hochwassergefahr ausgesetzt und die zunehmende Intensität extremer Flutereignisse stellt eine ernstzunehmende Bedrohung dar. Vor allem bei der Überschwemmung bebauter Gebiete können die resultierenden Schäden ein gewaltiges Ausmaß erreichen. Glücklicherweise steigt der mittlere Meeresspiegel langsam und es bleibt ausreichend Zeit sich an die verändernden Umweltbedingungen anzupassen. Dies geschieht üblicherweise durch den Bau oder die Verstärkung von Hochwasserschutzmaßnahmen wie z. B. Deichen oder Ufermauern aber auch angepasste Raumplanung und Katastrophenschutz sind vieldiskutierte Lösungsansätze. Obwohl die Folgenabschätzung des Meeresspiegelanstieges und die Entwicklung von entsprechenden Antwortstrategien zu den bedeutendsten Themen der Klimafolgenforschung gehören, bleiben globale Schadensschätzungen vage und stützen größtenteils auf den gleichen, wenigen Bewertungsmodellen. Diesem Umstand wollen wir mit der vorliegenden Arbeit Rechnung tragen und präsentieren einen eigenen Ansatz, der sowohl großskalige Abschätzungen als auch überregionale Vergleichbarkeit ermöglicht. Darüber hinaus leisten wir einen Beitrag zum allgemeinen Verständnis des Zusammenspiels zwischen dem mittleren Meeresspiegel, Anpassungsmaßnahmen und Flutschäden. Unser Vorhaben basiert auf zwei Grundbausteinen. Zum einen sind das makroskopische Flutschadensfunktionen, d. h. Schadensfunktionen zur Bestimmung des gesamten monetären Schadens in einem vorgegebenen Gebiet (z. B. einer Stadt) der durch eine Flut gewissen Ausmaßes verursacht wird. Dazu stellen wir einen systematischen Ansatz zur automatisierten Ermittlung solcher Kurven vor und bestimmen damit die Schadensfunktionen für 140 europäische Städte. Diese können sowohl für individuelle Schadensabschätzungen als auch für vergleichende, überregionale Studien herangezogen werden. Darüber hinaus ermöglicht die große Anzahl an Kurven eine grundlegende Charakterisierung des Anstieges der Schadensfunktion mit Hilfe eines funktionalen Modells. Das vorgeschlagene Modell ist im Allgemeinen s-förmig, weist jedoch für die relevanten Fluthöhen einen potenzgesetzartigen Anstieg auf und wir erhalten für die untersuchten Städte einen durchschnittlichen Exponenten von 3,4. Zur späteren Beschreibung der allgemeinen Zusammenhänge aller beteiligten Größen ist dieses Ergebnis von entscheidender Bedeutung. Der zweite grundlegende Baustein dieser Arbeit ist die Extremwerttheorie mittels derer wir das Auftreten von Flutereignissen schätzen und die in Verbindung mit einer Schadensfunktion die Wahrscheinlichkeitsverteilung der auftretenden Schäden im untersuchten Gebiet liefert. Da alle relevanten Parameter als variabel angenommen werden, bietet der beschriebene Ansatz größtmögliche Flexibilität und lässt sich auf beliebige Regionen anwenden. In Kopenhagen, beispielsweise, stellen wir bei einem Anstieg des mittleren Meeresspiegels von lediglich 11 cm bereits eine Verdopplung des jährlichen, zu erwarteten Schadens fest. Des Weiteren gelingt es uns, allgemeingültige funktionale Beziehungen zwischen den erwarteten Flutschäden und dem mittleren Meeresspiegel, sich verändernden Sturmbedingungen, sowie vorhandenen Schutzhöhen abzuleiten. Damit sind wir in der Lage, zukünftige Flutschäden auf Grundlage nur weniger Parameter zu schätzen: dem bereits erwähnten Exponenten der Schadensfuntion sowie den Extremwertparametern. Ähnliche Untersuchungen stellen wir zur Quantifizierung der aleatorischen Unsicherheit dieser Schätzungen an, wobei wir unter anderem einen Rückgang der Unsicherheit mit steigendem Meeresspiegel feststellen. Schlussendlich zeigen wir wie potenzielle Anpassungsmaßnahmen mit Hilfe einer Kosten-Nutzen-Analyse bewertet werden können. Dies wird anhand der dänischen Fallstudie Kalundborg veranschaulicht, für die wir die Amortisierungszeiten einer geplanten Investition für verschiedene Meeresspiegelszenarien und Diskontierungsraten untersuchen. KW - sea-level rise KW - flood damage KW - coastal flooding KW - Küstenfluten KW - Extremereignisse KW - Flutschäden KW - Meeresspiegelanstieg KW - Klimaanpassung Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-91074 ER -