TY - THES A1 - Zaupa, Alessandro T1 - Physical crosslinking of gelatin : a supramolecular approach to biomaterials T1 - Physikalische Quervernetzung von Gelatine : ein supramolekularer Zugang zu Biomaterialien N2 - This work describes the realization of physically crosslinked networks based on gelatin by the introduction of functional groups enabling specific supramolecular interactions. Molecular models were developed in order to predict the material properties and permit to establish a knowledge-based approach to material design. The effect of additional supramolecular interactions with hydroxyapaptite was then studied in composite materials. The calculated properties are compared to experimental results to validate the models. The models are then further used for the study of physically crosslinked networks. Gelatin was functionalized with desaminotyrosine (DAT) and desaminotyrosyl-tyrosine (DATT) side groups, derived from the natural amino acid tyrosine. These group can potentially undergo to π-π and hydrogen bonding interactions also under physiological conditions. Molecular dynamics (MD) simulations were performed on models with 0.8 wt.-% or 25 wt.-% water content, using the second generation forcefield CFF91. The validation of the models was obtained by the comparison with specific experimental data such as, density, peptide conformational angles and X-ray scattering spectra. The models were then used to predict the supramolecular organization of the polymer chain, analyze the formation of physical netpoints and calculate the mechanical properties. An important finding of simulation was that with the increase of aromatic groups also the number of observed physical netpoints increased. The number of relatively stable physical netpoints, on average zero 0 for natural gelatin, increased to 1 and 6 for DAT and DATT functionalized gelatins respectively. A comparison with the Flory-Rehner model suggested reduced equilibrium swelling by factor 6 of the DATT-functionalized materials in water. The functionalized gelatins could be synthesized by chemoselective coupling of the free carboxylic acid groups of DAT and DATT to the free amino groups of gelatin. At 25 wt.-% water content, the simulated and experimentally determined elastic mechanical properties (e.g. Young Modulus) were both in the order of GPa and were not influenced by the degree of aromatic modification. The experimental equilibrium degree of swelling in water decreased with increasing the number of inserted aromatic functions (from 2800 vol.-% for pure gelatin to 300 vol.-% for the DATT modified gelatin), at the same time, Young’s modulus, elongation at break, and maximum tensile strength increased. It could be show that the functionalization with DAT and DATT influences the chain organization of gelatin based materials together with a controlled drying condition. Functionalization with DAT and DATT lead to a drastic reduction of helical renaturation, that could be more finely controlled by the applied drying conditions. The properties of the materials could then be influenced by application of two independent methods. Composite materials of DAT and DATT functionalized gelatins with hydroxyapatite (HAp) show a drastic reduction of swelling degree. In tensile tests and rheological measurements, the composites equilibrated in water had increased Young’s moduli (from 200 kPa up to 2 MPa) and tensile strength (from 57 kPa up to 1.1 MPa) compared to the natural polymer matrix without affecting the elongation at break. Furthermore, an increased thermal stability from 40 °C to 85 °C of the networks could be demonstrated. The differences of the behaviour of the functionalized gelatins to pure gelatin as matrix suggested an additional stabilizing bond between the incorporated aromatic groups to the hydroxyapatite. N2 - Diese Arbeit beschreibt die Entwicklung von durch spezifische physikalische Wechselwirkungen quervernetzten Gelatine-basierten Materialien. Dazu wurden zunächst Computermodelle entwickelt, mit denen Eigenschaften der Materialien vorhergesagt werden sollten, um so eine wissensbasierte Entwicklung zu ermöglichen, um dann die Ergebnisse mit experimentellen Daten zu vergleichen und die Materialien und Modelle als Grundlage für weitere Entwicklungen zu nutzen. Gelatine wurde mit Desaminotyrosin (DAT) und Desaminotyrosyltyrosin (DATT) funktionalisiert, die sich von der natürlichen Aminosäure Tyrosin ableiten. Diese Gruppen können potentiell π-π Wechselwirkungen und Wasserstoffbrückenbindungen auch unter physiologischen Bedingungen eingehen. Es wurden Computersimulationen der Materialien mittels Moleküldynamik durchgeführt, wobei Modelle mit 0.8 Gew.-% und 25 Gew.-% Wassergehalt betrachtet wurden. Die Validierung der Modelle erfolgte durch Vergleich der errechneten mit experimentellen Daten wie z.B. der Dichte, Bindungswinkeln sowie Röntgenstreuungsspektren. Die Modelle wurden dann zur Vorhersage der molekularen Organisation der Polymerketten, Formierung physikalischer Netzpunkte und Berechnung der mechanischen Eigenschaften eingesetzt. Die Funktionalisierung der Gelatine mit DAT bzw. DATT führten wie gewünscht zur Ausbildung physikalischer Netzpunkte durch π-π Wechselwirkungen und Wasserstoffbrücken¬bindungen. Ein Schlüsselergebnis der Simulationen war, dass mit zunehmender Zahl an aromatischen Gruppen auch eine Zunahme der physikalischen Netzpunkte beobachtet werden konnte. Die funktionalisierten Gelatinen konnten durch chemoselektive Reaktion der Aminogruppen der Gelatine mit den freien Carboxylgruppen von DAT und DATT hergestellt werden. Materialien mit 25 Gew.-% Wassergehalt hatten in der Simulation und im Experiment mechanische Eigenschaften derselben Größenordnung (z.B. E-Moduln im unteren GPa-Bereich). Der Quellungsgrad der Materialien im Experiment nahm mit zunehmender Zahl an aromatische Gruppen ab (von 2800 Vol.-% auf 300 Vol.-%), wobei der Elastizitätsmodul, die Bruchdehnung sowie die Zugfestigkeit zunahmen. Die Funktionalisierung der Gelatine ist eine chemische Methode, um die Kettenanordnung auf molekularer Ebene zu beeinflussen, während die genaue Kontrolle der Trocknungs¬bedinguungen von Gelatine-basierten Materialien eine physikalische Methode mit demselben Ziel ist. Es konnte gezeigt werden, dass die Funktionalisierung von Gelatine mit DAT oder DATT zu einer stark verminderten Helixausbildungstendenz, die jedoch durch Variation der Trocknunsgbedingungen noch fein abgestimmt werden konnte. Somit konnten die mechanischen Eigenschaften von Filmen aus funktionlisierter Gelatine mit zwei unabhängigen Methoden eingestellt werden. Komposite der mit DAT oder DATT funktionalisierten Gelatine und Hydroxyapatit (HAp) zeigten deutlich verringerter Quellung. In Zugdehnungsexperimenten und rheologischen Untersuchungen zeigten die Komposite im Gleichgewichtsquellungszustand erhöhte Elastizitätsmoduln (von 200 kPa auf bis zu 2 MPa) und Zugfestigkeit (von 57 kPa auf bis zu 1.1 MPa). Darüber hinaus konnte die Übergangstemperatur Tc deutlich gesteigert werden (von ca. 40 °C auf > 85 °C). Dieses Verhalten ließ sich auf stabilisierende Bindungen zwischen den aromatische Gruppen und dem HAp zurückführen. KW - Physikalische Quervernetzung KW - Supramolekularen Wechselwirkung KW - Molekulare Modellierung KW - Biomaterialien KW - Gelatine KW - Komposite KW - Hydroxyapatit KW - Physical Network KW - Supramolecular Interaction KW - Molecular modeling KW - Biomaterial KW - Gelatin KW - Composite KW - Hydroxyapatite Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-52888 ER - TY - THES A1 - Schmitt, Clemens Nikolaus Zeno T1 - The role of protein metal complexes in the mechanics of Mytilus californianus byssal threads T1 - Der Einfluss von Protein-Metall-Komplexen auf die mechanischen Eigenschaften der Byssusfäden von Mytilus californianus N2 - Protein-metal coordination complexes are well known as active centers in enzymatic catalysis, and to contribute to signal transduction, gas transport, and to hormone function. Additionally, they are now known to contribute as load-bearing cross-links to the mechanical properties of several biological materials, including the jaws of Nereis worms and the byssal threads of marine mussels. The primary aim of this thesis work is to better understand the role of protein-metal cross-links in the mechanical properties of biological materials, using the mussel byssus as a model system. Specifically, the focus is on histidine-metal cross-links as sacrificial bonds in the fibrous core of the byssal thread (Chapter 4) and L-3,4-dihydroxyphenylalanine (DOPA)-metal bonds in the protective thread cuticle (Chapter 5). Byssal threads are protein fibers, which mussels use to attach to various substrates at the seashore. These relatively stiff fibers have the ability to extend up to about 100 % strain, dissipating large amounts of mechanical energy from crashing waves, for example. Remarkably, following damage from cyclic loading, initial mechanical properties are subsequently recovered by a material-intrinsic self-healing capability. Histidine residues coordinated to transition metal ions in the proteins comprising the fibrous thread core have been suggested as reversible sacrificial bonds that contribute to self-healing; however, this remains to be substantiated in situ. In the first part of this thesis, the role of metal coordination bonds in the thread core was investigated using several spectroscopic methods. In particular, X-ray absorption spectroscopy (XAS) was applied to probe the coordination environment of zinc in Mytilus californianus threads at various stages during stretching and subsequent healing. Analysis of the extended X-ray absorption fine structure (EXAFS) suggests that tensile deformation of threads is correlated with the rupture of Zn-coordination bonds and that self-healing is connected with the reorganization of Zn-coordination bond topologies rather than the mere reformation of Zn-coordination bonds. These findings have interesting implications for the design of self-healing metallopolymers. The byssus cuticle is a protective coating surrounding the fibrous thread core that is both as hard as an epoxy and extensible up to 100 % strain before cracking. It was shown previously that cuticle stiffness and hardness largely depend on the presence of Fe-DOPA coordination bonds. However, the byssus is known to concentrate a large variety of metals from seawater, some of which are also capable of binding DOPA (e.g. V). Therefore, the question arises whether natural variation of metal composition can affect the mechanical performance of the byssal thread cuticle. To investigate this hypothesis, nanoindentation and confocal Raman spectroscopy were applied to the cuticle of native threads, threads with metals removed (EDTA treated), and threads in which the metal ions in the native tissue were replaced by either Fe or V. Interestingly, replacement of metal ions with either Fe or V leads to the full recovery of native mechanical properties with no statistical difference between each other or the native properties. This likely indicates that a fixed number of metal coordination sites are maintained within the byssal thread cuticle – possibly achieved during thread formation – which may provide an evolutionarily relevant mechanism for maintaining reliable mechanics in an unpredictable environment. While the dynamic exchange of bonds plays a vital role in the mechanical behavior and self-healing in the thread core by allowing them to act as reversible sacrificial bonds, the compatibility of DOPA with other metals allows an inherent adaptability of the thread cuticle to changing circumstances. The requirements to both of these materials can be met by the dynamic nature of the protein-metal cross-links, whereas covalent cross-linking would fail to provide the adaptability of the cuticle and the self-healing of the core. In summary, these studies of the thread core and the thread cuticle serve to underline the important and dynamic roles of protein-metal coordination in the mechanical function of load-bearing protein fibers, such as the mussel byssus. N2 - Protein-Metall Bindungen sind vor allem durch ihre Rolle in physiologischen Prozessen bekannt. Vor kurzem jedoch wurde eine völlig andere Funktion dieser chemischen Bindungen, als lasttragendes Vernetzungselement in Kieferzangen mariner Ringelwürmer der Gattung Nereis und Byssusfäden mariner Muscheln der Gattung Mytilus (Miesmuscheln) entdeckt. Ziel dieser Dissertation ist es, am Beispiel von M. californianus Byssusfäden, ein besseres Verständnis des Einflusses von Protein-Metall Komplexen auf die mechanischen Eigenschaften biologischer Materialien zu erlangen. Byssusfäden sind Proteinfasern, welche Miesmuscheln zur sicheren Befestigung verwenden. Diese relativ steifen Fäden können bis zu 100 % gedehnt zu werden, ohne zu brechen. Bei sofortiger Wiederbelastung zeigt sich jedoch eine Verschlechterung der mechanischen Eigenschaften des Materials. Erstaunlicherweise können sich die mechanischen Eigenschaften der Fäden hiervon wieder erholen. Es wird angenommen, dass im Faserkern der Byssusfäden die Aminosäure Histidin Bindungen mit Metallionen eingeht, welche als reversible Opferbindungen fungieren können und so einen Selbstheilungsprozess ermöglichen. In dieser Arbeit wurde der Beitrag von Protein-Zink Bindungen zur Mechanik der Byssusfäden mittels Röntgenabsorptionsspektroskopie (XAS), untersucht. Die ermittelten Daten legen nahe, dass Zn-Aminosäure Bindungen unter Dehnung der Byssusfäden brechen. Des Weiteren scheint der Selbstheilungsprozess nicht auf der bloßen Wiederherstellung dieser Bindungen zu beruhen, sondern viel mehr auf der Regenerierung der anfänglichen Bindungsstruktur und -verteilung. Diese Erkenntnisse stellen interessante Konzepte für die Entwicklung von selbstheilenden Metallopolymeren bereit. Die relativ harte Hülle der Byssusfäden schützt den Faserkern vor Abrieb. Laut Literatur basiert ihre Härte und Steifigkeit hauptsächlich auf der Quervernetzung durch Fe-DOPA (eine modifizierte Aminosäure) Bindungen. Jedoch können verschiedene Metalle aus dem Meerwasser in Byssusfäden aufgenommen werden und auch Bindungen mit DOPA bilden. Daher stellt sich die Frage, nach dem Zusammenhang zwischen mechanischen Eigenschaften und der Metallzusammensetzung der Byssushülle. Um dieser Frage nachzugehen, wurden die Metallionen aus der Hülle natürlicher Byssusfäden entfernt, und durch entweder Fe oder V ersetzt. Anschließend wurden die mechanischen Eigenschaften der Hüllen der behandelten und unbehandelten Byssusfäden mittels Nanoindentierung bestimmt. Interessanterweise besteht kein Unterschied der mechanischen Eigenschaften der natürlichen und modifizierten Hüllen der Byssusfäden, was dafür spricht, dass in der Hülle der Byssusfäden eine feste Anzahl an Protein-Metall Quervernetzungspunkten vorhanden ist, die möglicherweise durch den speziellen Produktionsprozess der Fäden festgelegt wird. Dies könnte eine evolutionäre Anpassung des Byssus darstellen, um eine verlässliche Verankerung des Organismus in verschiedenen Umgebungen zu gewährleisten. Während die Dynamik der Protein-Metall Bindungen ihnen eine Rolle als chemische Opferbindung im selbstheilenden Faserkern erlaubt, ermöglicht sie die Funktion der Hülle unter Verwendung verschiedener Metalle. Andere nicht-kovalente Wechselwirkungen haben sicherlich eine ähnliche Dynamik, und kovalente Bindungen sind stabiler, aber nur Protein-Metall Bindungen erlauben eine stabile und dynamische Quervernetzung, ohne die weder das Anpassungsvermögen der Hülle, noch das Selbstheilungsvermögen des Faserkerns möglich wären. Die Untersuchungen der Hülle und des Faserkerns der Byssusfäden verdeutlichen die Wichtigkeit der Protein-Metall Bindungen und ihrer Dynamik für die mechanische Funktion lasttragender Proteinfasern, wie dem Byssus der Miesmuscheln. KW - biomaterials KW - self-healing materials KW - protein-metal interaction KW - Biomaterialien KW - selbstheilende Materialien KW - Protein-Metall-Wechselwirkung Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-74216 ER - TY - THES A1 - Saatchi, Mersa T1 - Study on manufacturing of multifunctional bilayer systems N2 - Layered structures are ubiquitous in nature and industrial products, in which individual layers could have different mechanical/thermal properties and functions independently contributing to the performance of the whole layered structure for their relevant application. Tuning each layer affects the performance of the whole layered system. Pores are utilized in various disciplines, where low density, but large surfaces are demanded. Besides, open and interconnected pores would act as a transferring channel for guest chemical molecules. The shape of pores influences compression behavior of the material. Moreover, introducing pores decreases the density and subsequently the mechanical strength. To maintain defined mechanical strength under various stress, porous structure can be reinforced by adding reinforcement agent such as fiber, filler or layered structure to bear the mechanical stress on demanded application. In this context, this thesis aimed to generate new functions in bilayer systems by combining layers having different moduli and/or porosity, and to develop suitable processing techniques to access these structures. Manufacturing processes of layered structures employ often organic solvents mostly causing environmental pollution. In this regard, the studied bilayer structures here were manufactured by processes free of organic solvents. In this thesis, three bilayer systems were studied to answer the individual questions. First, while various methods of introducing pores in melt-phase are reported for one-layer constructs with simple geometry, can such methods be applied to a bilayer structure, giving two porous layers? This was addressed with Bilayer System 1. Two porous layers were obtained from melt-blending of two different polyurethanes (PU) and polyvinyl alcohol (PVA) in a co-continuous phase followed by sequential injection molding and leaching the PVA phase in deionized water. A porosity of 50 ± 5% with a high interconnectivity was obtained, in which the pore sizes in both layers ranged from 1 µm to 100 µm with an average of 22 µm in both layers. The obtained pores were tailored by applying an annealing treatment at relevant high temperatures of 110 °C and 130 °C, which allowed the porosity to be kept constant. The disadvantage of this system is that a maximum of 50% porosity could be reached and removal of leaching material in the weld line section of both layers is not guaranteed. Such a construct serves as a model for bilayer porous structure for determining structure-property relationships with respect to the pore size, porosity and mechanical properties of each layer. This fabrication method is also applicable to complex geometries by designing a relevant mold for injection molding. Secondly, utilizing scCO2 foaming process at elevated temperature and pressure is considered as a green manufacturing process. Employing this method as a post-treatment can alter the history orientation of polymer chains created by previous fabrication methods. Can a bilayer structure be fabricated by a combination of sequential injection molding and scCO2 foaming process, in which a porous layer is supported by a compact layer? Such a construct (Bilayer System 2) was generated by sequential injection molding of a PCL (Tm ≈ 58 °C) layer and a PLLA (Tg ≈ 58 °C) layer. Soaking this structure in the autoclave with scCO2 at T = 45 °C and P = 100 bar led to the selective foaming of PCL with a porosity of 80%, while the PLA layer was kept compact. The scCO2 autoclave led to the formation of a porous core and skin layer of the PCL, however, the degree of crystallinity of PLLA layer increased from 0 to 50% at the defined temperature and pressure. The microcellular structure of PCL as well as the degree of crystallinity of PLLA were controlled by increasing soaking time. Thirdly, wrinkles on surfaces in micro/nano scale alter the properties, which are surface-related. Wrinkles are formed on a surface of a bilayer structure having a compliant substrate and a stiff thin film. However, the reported wrinkles were not reversible. Moreover, dynamic wrinkles in nano and micro scale have numerous examples in nature such as gecko foot hair offering reversible adhesion and an ability of lotus leaves for self-cleaning altering hydrophobicity of the surface. It was envisioned to imitate this biomimetic function on the bilayer structure, where self-assembly on/off patterns would be realized on the surface of this construct. In summary, developing layered constructs having different properties/functions in the individual layer or exhibiting a new function as the consequence of layered structure can give novel insight for designing layered constructs in various disciplines such as packaging and transport industry, aerospace industry and health technology. N2 - Schichtstrukturen sind in der Natur und in Industrieprodukten allgegenwärtig, wobei die einzelnen Schichten unterschiedliche mechanische/thermische Eigenschaften und Funktionen haben können, die unabhängig voneinander zur Leistungsfähigkeit der gesamten Schichtstruktur für die jeweilige Anwendung beitragen. Die individuelle Abstimmung jeder einzelnen Schicht wirkt sich auf die Leistungsfähigkeit des gesamten Schichtsystems aus. Poren werden in verschiedenen Bereichen eingesetzt, in denen eine geringe Dichte, aber eine große Oberfläche erforderlich ist. Außerdem können offene und miteinander verbundene Poren als Übertragungskanal für chemische Gast-Moleküle dienen. Die Form der Poren beeinflusst das Kompressionsverhalten des Materials. In diesem Zusammenhang zielte diese Arbeit darauf ab, neue Funktionen in zweischichtigen Systemen durch die Kombination von Schichten mit unterschiedlichen Modulen und/oder Porosität zu erzeugen und geeignete Verarbeitungstechniken zu entwickeln, um diese Strukturen zu erreichen. Bei der Herstellung von Schichtstrukturen werden häufig organische Lösungsmittel verwendet, die meist eine Umweltbelastung darstellen. Daher wurden die hier untersuchten Doppelschichtstrukturen mit Verfahren hergestellt, die frei von organischen Lösungsmitteln sind. In dieser Arbeit wurden drei Doppelschichtsysteme untersucht, um die einzelnen Fragen zu beantworten. Erstens: Während verschiedene Methoden zur Einführung von Poren in der Schmelzphase für einschichtige Konstruktionen mit einfacher Geometrie bekannt sind, stellt sich die Frage, ob solche Methoden sich auf eine zweischichtige Struktur anwenden lassen und somit zwei unterschiedlich poröse Schichten ergibt? Dies wurde mit dem Zweischichtsystem 1 untersucht. Zwei poröse Schichten wurden durch das Mischen in der Schmelze von zwei verschiedenen Polyurethanen (PU) und Polyvinylalkohol (PVA) in einer co-kontinuierlichen Phase erhalten. Es folgte sequentielles Spritzgießen und das Entfernen der PVA-Phase durch „Leaching“ in entionisiertem Wasser. Es wurde eine Porosität von 50 ± 5 % mit einer hohen Interkonnektivität erzielt, wobei die Porengrößen in beiden Schichten zwischen 1 µm und 100 µm lagen, mit einem Durchschnittswert von 22 µm in beiden Schichten. Diese Herstellungsmethode ist auch auf komplexe Geometrien anwendbar, es muss lediglich eine entsprechende Form für das Spritzgießen entworfen werden. Zweitens: die Verwendung des scCO2-Schäumungsverfahrens bei erhöhter Temperatur und erhöhtem Druck wird als umweltfreundlicher Herstellungsprozess betrachtet. Durch den Einsatz dieser Methode als Nachbehandlung kann die Historie der Ausrichtung der Polymerketten, die durch frühere Herstellungsmethoden entstanden ist, verändert werden. Kann eine zweischichtige Struktur durch eine Kombination aus sequentiellem Spritzgießen und scCO2-Schäumverfahren hergestellt werden, bei der eine poröse Schicht von einer kompakten Schicht getragen wird? Ein solches Konstrukt (Bilayer System 2) wurde durch sequentielles Spritzgießen einer PCL-Schicht (Tm ≈ 58 °C) und einer PLLA-Schicht (Tg ≈ 58 °C) erzeugt. Das Einweichen dieser Struktur in scCO2 im Autoklaven bei T = 45 °C und P = 100 bar führte zum selektiven Aufschäumen von PCL mit einer Porosität von 80%, während die PLA-Schicht unverschäumt blieb. Die Behandlung im scCO2-Autoklav führte zur Bildung einer porösen Kern- und Hautschicht des PCL, während der Kristallinitätsgrad der PLLA-Schicht bei der definierten Temperatur und dem definierten Druck von 0 auf 50 % anstieg. Die mikrozelluläre Struktur von PCL sowie der Kristallinitätsgrad von PLLA wurden durch die Erhöhung der Einweichzeit gesteuert. Drittens verändern Falten auf Oberflächen im Mikro-/Nanomaßstab die Eigenschaften, die mit der Oberfläche zusammenhängen. Falten bilden sich auf der Oberfläche einer zweischichtigen Struktur mit einem nachgiebigen Substrat und einem steifen dünnen Film. Die Falten waren jedoch nicht reversibel. Darüber hinaus gibt es in der Natur zahlreiche Beispiele für dynamische Falten im Nano- und Mikromaßstab, wie z. B. Gecko-Fußhaare, die eine reversible Adhäsion ermöglichen, und die Fähigkeit von Lotusblättern, sich selbst zu reinigen, indem sie die Hydrophobizität der Oberfläche verändern. Diese biomimetische Funktion sollte auf der Doppelschichtstruktur nachgeahmt werden, wobei auf der Oberfläche dieses Konstrukts selbstorganisierende On/Off-Muster realisiert werden sollten. Zusammenfassend kann gesagt werden, dass die Entwicklung geschichteter Konstrukte mit unterschiedlichen Eigenschaften/Funktionen in den einzelnen Schichten oder mit einer neuen Funktion als Folge der geschichteten Struktur neue Erkenntnisse für den Entwurf geschichteter Konstrukte in verschiedenen Disziplinen wie der Verpackungs- und Transportindustrie, der Luft- und Raumfahrtindustrie und der Gesundheitstechnologie liefern kann. T2 - Studie zur Herstellung multifunktionaler Doppelschichtsysteme KW - bilayer system KW - biomaterials KW - wrinkles KW - polymer KW - injection molding KW - Doppelschichtstruktur KW - Biomaterialien KW - poröse Struktur KW - Falten KW - Spritzgießen Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-601968 ER -