TY - GEN A1 - Campforts, Benjamin A1 - Schwanghart, Wolfgang A1 - Govers, Gerard T1 - Accurate simulation of transient landscape evolution by eliminating numerical diffusion BT - the TTLEM 1.0 model T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Landscape evolution models (LEMs) allow the study of earth surface responses to changing climatic and tectonic forcings. While much effort has been devoted to the development of LEMs that simulate a wide range of processes, the numerical accuracy of these models has received less attention. Most LEMs use first-order accurate numerical methods that suffer from substantial numerical diffusion. Numerical diffusion particularly affects the solution of the advection equation and thus the simulation of retreating landforms such as cliffs and river knickpoints. This has potential consequences for the integrated response of the simulated landscape. Here we test a higher-order flux-limiting finite volume method that is total variation diminishing (TVD-FVM) to solve the partial differential equations of river incision and tectonic displacement. We show that using the TVD-FVM to simulate river incision significantly influences the evolution of simulated landscapes and the spatial and temporal variability of catchment-wide erosion rates. Furthermore, a two-dimensional TVD-FVM accurately simulates the evolution of landscapes affected by lateral tectonic displacement, a process whose simulation was hitherto largely limited to LEMs with flexible spatial discretization. We implement the scheme in TTLEM (TopoToolbox Landscape Evolution Model), a spatially explicit, raster-based LEM for the study of fluvially eroding landscapes in TopoToolbox 2. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 664 KW - stream power law KW - river incision model KW - transport KW - topography KW - hillslopes KW - equation KW - implicit KW - erosion KW - ranges Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-418784 SN - 1866-8372 IS - 664 ER - TY - GEN A1 - Hergert, T. A1 - Heidbach, Oliver A1 - Reiter, Karsten A1 - Giger, S. B. A1 - Marschall, P. T1 - Stress field sensitivity analysis in a sedimentary sequence of the Alpine foreland, northern Switzerland T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The stress field at depth is a relevant parameter for the design of subsurface constructions and reservoir management. Yet the distortion of the regional stress field due to local-scale features such as sedimentary and tectonic structures or topography is often poorly constrained. We conduct a stress sensitivity analysis using 3-D numerical geomechanical modelling with an elasto-plastic material law to explore the impact of such site-specific features on the stress field in a sedimentary sequence of the Swiss Alpine foreland. The model's dimensions are 14 x 14 x 3 km(3) and it contains 10 units with different mechanical properties, intersected by two regional fault zones. An initial stress state is established involving a semi-empirical relationship between the ratio of horizontal to vertical stress and the overconsolidation ratio of argillaceous sediments. The model results indicate that local topography can affect the stress field significantly to depths greater than the relief contrasts at the surface, especially in conjunction with horizontal tectonic loading. The complexity and frictional properties of faults are also relevant. The greatest variability of the stress field arises across the different sedimentary units. Stress magnitudes and stress anisotropy are much larger in stiffer formations such as massive limestones than in softer argillaceous formations. The stiffer formations essentially carry the load of the far-field forces and are therefore more sensitive to changes of the boundary conditions. This general characteristic of stress distribution in the stiff and soft formations is broadly maintained also with progressive loading towards the plastic limit. The stress field in argillaceous sediments within a stack of formations with strongly contrasting mechanical properties like in the Alpine foreland appears to be relatively insensitive to changes in the tectonic boundary conditions and is largely controlled by the maximum stiffness contrast with respect to the load-bearing formations. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 522 KW - in-situ stress KW - Appalachian plateau KW - insitu stress KW - map project KW - basin KW - fault KW - perturbations KW - evolution KW - Jura KW - topography Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-409600 SN - 1866-8372 IS - 522 ER - TY - THES A1 - Marc, Odin T1 - Earthquake-induced landsliding T1 - Erdbeben induzierten Hangrutschungen BT - earthquakes as erosional agents across timescales BT - Erdbeben als Erosions-Agenten über Zeitskalen N2 - Earthquakes deform Earth's surface, building long-lasting topographic features and contributing to landscape and mountain formation. However, seismic waves produced by earthquakes may also destabilize hillslopes, leading to large amounts of soil and bedrock moving downslope. Moreover, static deformation and shaking are suspected to damage the surface bedrock and therefore alter its future properties, affecting hydrological and erosional dynamics. Thus, earthquakes participate both in mountain building and stimulate directly or indirectly their erosion. Moreover, the impact of earthquakes on hillslopes has important implications for the amount of sediment and organic matter delivered to rivers, and ultimately to oceans, during episodic catastrophic seismic crises, the magnitude of life and property losses associated with landsliding, the perturbation and recovery of landscape properties after shaking, and the long term topographic evolution of mountain belts. Several of these aspects have been addressed recently through individual case studies but additional data compilation as well as theoretical or numerical modelling are required to tackle these issues in a more systematic and rigorous manner. This dissertation combines data compilation of earthquake characteristics, landslide mapping, and seismological data interpretation with physically-based modeling in order to address how earthquakes impact on erosional processes and landscape evolution. Over short time scales (10-100 s) and intermediate length scales (10 km), I have attempted to improve our understanding and ability to predict the amount of landslide debris triggered by seismic shaking in epicentral areas. Over long time scales (1-100 ky) and across a mountain belt (100 km) I have modeled the competition between erosional unloading and building of topography associated with earthquakes. Finally, over intermediate time scales (1-10 y) and at the hillslope scale (0.1-1 km) I have collected geomorphological and seismological data that highlight persistent effects of earthquakes on landscape properties and behaviour. First, I compiled a database on earthquakes that produced significant landsliding, including an estimate of the total landslide volume and area, and earthquake characteristics such as seismic moment and source depth. A key issue is the accurate conversion of landslide maps into volume estimates. Therefore I also estimated how amalgamation - when mapping errors lead to the bundling of multiple landslide into a single polygon - affects volume estimates from various earthquake-induced landslide inventories and developed an algorithm to automatically detect this artifact. The database was used to test a physically-based prediction of the total landslide area and volume caused by earthquakes, based on seismological scaling relationships and a statistical description of the landscape properties. The model outperforms empirical fits in accuracy, with 25 out of 40 cases well predicted, and allows interpretation of many outliers in physical terms. Apart from seismological complexities neglected by the model I found that exceptional rock strength properties or antecedent conditions may explain most outliers. Second, I assessed the geomorphic effects of large earthquakes on landscape dynamics by surveying the temporal evolution of precipitation-normalized landslide rate. I found strongly elevated landslide rates following earthquakes that progressively recover over 1 to 4 years, indicating that regolith strength drops and recovers. The relaxation is clearly non-linear for at least one case, and does not seem to correlate with coseismic landslide reactivation, water table level increase or tree root-system recovery. I suggested that shallow bedrock is damaged by the earthquake and then heals on annual timescales. Such variations in ground strength must be translated into shallow subsurface seismic velocities that are increasingly surveyed with ambient seismic noise correlations. With seismic noise autocorrelation I computed the seismic velocity in the epicentral areas of three earthquakes where I constrained a change in landslide rate. We found similar recovery dynamics and timescales, suggesting that seismic noise correlation techniques could be further developed to meaningfully assess ground strength variations for landscape dynamics. These two measurements are also in good agreement with the temporal dynamics of post-seismic surface displacement measured by GPS. This correlation suggests that the surface healing mechanism may be driven by tectonic deformation, and that the surface regolith and fractured bedrock may behave as a granular media that slowly compacts as it is sheared or vibrated. Last, I compared our model of earthquake-induced landsliding with a standard formulation of surface deformation caused by earthquakes to understand which parameters govern the competition between the building and destruction of topography caused by earthquakes. In contrast with previous studies I found that very large (Mw>8) earthquakes always increase the average topography, whereas only intermediate (Mw ~ 7) earthquakes in steep landscapes may reduce topography. Moreover, I illustrated how the net effect of earthquakes varies with depth or landscape steepness implying a complex and ambivalent role through the life of a mountain belt. Further I showed that faults producing a Gutenberg-Richter distribution of earthquake sizes, will limit topography over a larger range of fault sizes than faults producing repeated earthquakes with a characteristic size. N2 - Erdbeben gestalten die Erdoberfläche, sie tragen langfristig zum Aufbau von Topografie sowie zur Landschafts- und Gebirgsbildung bei. Die von Erdbeben erzeugten seismischen Erschütterungen können Gebirge jedoch auch destabilisieren und grosse Mengen an Boden sowie Grundgestein zum Abrutschen bringen und zerrüten. Erdbeben wirken daher sowohl auf die Gebirgsbildung als auch auf ihre Denudation. Ein detailliertes Verständnis der Auswirkungen von Erdbeben auf Hangstabilität ist eine wichtige Voraussetzung um die Zusammenhänge mit anderen Prozesse besser nachzuvollziehen: der kurzfristige Transport von Sedimenten und organischem Material in Flüsse und ihre Ablagerung bis in die Ozeane; der Verlust von Leben und Infrastruktur durch Hangrutschungen verbunden mit episodischen, katastrophalen, seismischen Ereignissen; die Störung und Wiederherstellung von Landschaftseigenschaften nach Erdbeben; sowie die langfristigen topographischen Entwicklung von ganzen Gebirgsketten. Einige dieser Forschungsfragen wurden kürzlich in einzelnen Fallstudien betrachtet aber zusätzliche Datenerfassung, theoretische und numerische Modellierung sind erforderlich, um diese Prozesse detaillierter zu erfassen. In dieser Dissertation werden Daten zu Eigenschaften der Erdbeben sowie aus Hangrutsch kartierungen und die Interpretation seismologischer Daten mit physikalischer Modellierung kombiniert, um die folgende übergreifende Frage zu beantworten: Wie beeinflussen Erdbeben die Erosionsprozesse in der Landschaftsentwicklung? Auf einer kurzen Zeitskala (10-100 s) und einer mittleren räumlichen Skala (10 km), habe ich versucht sowohl unser Prozessverständnis zu vertiefen als auch Vorhersagen über das gesamte Volumen der Rutschungen welche durch seismische Beben in der unmittelbaren Umgebung von Epizentren ausgelöst wurden, zu treffen und zu verbessern Auf einer langen Zeitskala (1-100 ky) und über einen Gebirgsgürtel (100 km) habe ich die durch Erdbeben ausgelösten konkurrierenden Prozesse von Abflachung von Topografie durch Erosion und den Aufbau von Topografie durch Hebung, modelliert. Auf einer mittleren Zeitskala (1-10 Jahre) und einer relativ kleinen Hangskala (0,1-1 km) habe ich geomorphologische und seismologische Daten erhoben, welche die anhaltenden Auswirkungen von Erdbeben auf Landschaftseigenschaften und deren Dynamic hervorheben. Zuerst habe ich eine Datenbank von Erdbeben erstellt, welche erhebliche Hangrutschungen ausgelöst hatten, einschliesslich einer Schätzung des gesamten Hangrutschungsvolumens und der Erdbebencharakteristiken wie z.B. seismischer Moment und Lage des Hypozentrums. Ich habe auch beurteilt, wie die Kartierung von Erdrutschen die Abschätzungen des Gesamtvolumens fehlerhaft beeinflussen können und präsentiere einen Algorithmus, um solche Fehler automatisch zu erkennen. Diese Datenbank wurde verwendet, um eine physisch-basierte Vorhersage der durch Erdbeben verursachten gesamten Hangrutschungsflächen und Volumen zu testen, welche auf seismologischen Skalierungsbeziehungen und auf einer statistischen Beschreibung der Landschaftseigenschaften basiert. Zweitens untersuchte ich den Einfluss von starken Erdbeben auf die Landschaftsdynamik durch das Vermessen der temporalen Entwicklung der Suszeptibilität von Hangrutschungen. Ich habe gezeigt, dass die stark erhöhte Hangrutschrate nach dem Erdbeben schrittweise nach einigen Jahren zurückging. Diesen Rückgang über die Zeit interpretiere ich als die Zerrüttung von oberflächennahem Gestein durch das Erdbeben und die Heilung der dadurch entstandenen Risse über der Zeit. Meine Daten deuten darauf hin, dass die Zerrüttungen und die anschliessende Heilung des Festgesteins in dem epizentralen Gebieten mit ambienten, seismischen Hintergrundrauschen überwacht werden kann. Möglicherweise wird die Heilung zusätzlich durch andauernde post-seismische Deformation angetrieben. Am Ende der Arbeit vergleiche ich meine entwickelten Modelle von erdbebenbedingten Hangrutschungen mit einer Standardformel für erdbebenverursachte Oberflächendeformierung. Mit diesem Vergleich zeige ich welche Parameter den Wettstreit zwischen der Hebung von Topografie und der gleichzeitigen Zerstörung von Topografie durch Erdbeben bestimmen. Ich zeige, dass nur mittlere - Mw ~ 7 - Erdbeben die Topografie reduzieren können im Gegensatz zu stärkeren - Mw > 8 - Beben die immer einen effektive Bildung von Topografie verursachen. Meine Ergebnisse zeigen die komplexen Zusammenhänge von Erdbeben in der Gebirgsbildung. KW - earthquake KW - landslide KW - erosion KW - Erdbeben KW - Erdrutsch KW - Erosion KW - topography KW - Topographie Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-96808 ER - TY - GEN A1 - Schwanghart, Wolfgang A1 - Scherler, Dirk T1 - Bumps in river profiles BT - uncertainty assessment and smoothing using quantile regression techniques T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The analysis of longitudinal river profiles is an important tool for studying landscape evolution. However, characterizing river profiles based on digital elevation models (DEMs) suffers from errors and artifacts that particularly prevail along valley bottoms. The aim of this study is to characterize uncertainties that arise from the analysis of river profiles derived from different, near-globally available DEMs. We devised new algorithms quantile carving and the CRS algorithm - that rely on quantile regression to enable hydrological correction and the uncertainty quantification of river profiles. We find that globally available DEMs commonly overestimate river elevations in steep topography. The distributions of elevation errors become increasingly wider and right skewed if adjacent hillslope gradients are steep. Our analysis indicates that the AW3D DEM has the highest precision and lowest bias for the analysis of river profiles in mountainous topography. The new 12m resolution TanDEM-X DEM has a very low precision, most likely due to the combined effect of steep valley walls and the presence of water surfaces in valley bottoms. Compared to the conventional approaches of carving and filling, we find that our new approach is able to reduce the elevation bias and errors in longitudinal river profiles. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 624 KW - digital elevation model KW - drainage basins KW - DEM uncertainty KW - error KW - validation KW - SRTM KW - topography KW - resolution KW - terrain KW - geomorphometry Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-419077 SN - 1866-8372 IS - 624 ER - TY - THES A1 - Seleem, Omar T1 - Towards urban pluvial flood mapping using data-driven models T1 - Kartierung städtischer Überschwemmungen mit datengesteuerten Modellen N2 - Casualties and damages from urban pluvial flooding are increasing. Triggered by short, localized, and intensive rainfall events, urban pluvial floods can occur anywhere, even in areas without a history of flooding. Urban pluvial floods have relatively small temporal and spatial scales. Although cumulative losses from urban pluvial floods are comparable, most flood risk management and mitigation strategies focus on fluvial and coastal flooding. Numerical-physical-hydrodynamic models are considered the best tool to represent the complex nature of urban pluvial floods; however, they are computationally expensive and time-consuming. These sophisticated models make large-scale analysis and operational forecasting prohibitive. Therefore, it is crucial to evaluate and benchmark the performance of other alternative methods. The findings of this cumulative thesis are represented in three research articles. The first study evaluates two topographic-based methods to map urban pluvial flooding, fill–spill–merge (FSM) and topographic wetness index (TWI), by comparing them against a sophisticated hydrodynamic model. The FSM method identifies flood-prone areas within topographic depressions while the TWI method employs maximum likelihood estimation to calibrate a TWI threshold (τ) based on inundation maps from the 2D hydrodynamic model. The results point out that the FSM method outperforms the TWI method. The study highlights then the advantage and limitations of both methods. Data-driven models provide a promising alternative to computationally expensive hydrodynamic models. However, the literature lacks benchmarking studies to evaluate the different models' performance, advantages and limitations. Model transferability in space is a crucial problem. Most studies focus on river flooding, likely due to the relative availability of flow and rain gauge records for training and validation. Furthermore, they consider these models as black boxes. The second study uses a flood inventory for the city of Berlin and 11 predictive features which potentially indicate an increased pluvial flooding hazard to map urban pluvial flood susceptibility using a convolutional neural network (CNN), an artificial neural network (ANN) and the benchmarking machine learning models random forest (RF) and support vector machine (SVM). I investigate the influence of spatial resolution on the implemented models, the models' transferability in space and the importance of the predictive features. The results show that all models perform well and the RF models are superior to the other models within and outside the training domain. The models developed using fine spatial resolution (2 and 5 m) could better identify flood-prone areas. Finally, the results point out that aspect is the most important predictive feature for the CNN models, and altitude is for the other models. While flood susceptibility maps identify flood-prone areas, they do not represent flood variables such as velocity and depth which are necessary for effective flood risk management. To address this, the third study investigates data-driven models' transferability to predict urban pluvial floodwater depth and the models' ability to enhance their predictions using transfer learning techniques. It compares the performance of RF (the best-performing model in the previous study) and CNN models using 12 predictive features and output from a hydrodynamic model. The findings in the third study suggest that while CNN models tend to generalise and smooth the target function on the training dataset, RF models suffer from overfitting. Hence, RF models are superior for predictions inside the training domains but fail outside them while CNN models could control the relative loss in performance outside the training domains. Finally, the CNN models benefit more from transfer learning techniques than RF models, boosting their performance outside training domains. In conclusion, this thesis has evaluated both topographic-based methods and data-driven models to map urban pluvial flooding. However, further studies are crucial to have methods that completely overcome the limitation of 2D hydrodynamic models. N2 - Die Zahl der Todesopfer und Schäden durch Überschwemmungen in Städten nimmt zu. Ausgelöst durch kurze, lokal begrenzte und intensive Niederschlagsereignisse können urbane pluviale Überschwemmungen überall auftreten - sogar in Gebieten, in denen es in der Vergangenheit keine Überschwemmungen gab. Urbane pluviale Überschwemmungen haben eine relativ geringe zeitliche und räumliche Ausdehnung. Obwohl die kumulativen Verluste durch urbane pluviale Überschwemmungen vergleichbar sind, konzentrieren sich die meisten Hochwasserrisikomanagement- und -minderungsstrategien auf Fluss- und Küstenüberschwemmungen. Numerisch-physikalisch-hydrodynamische Modelle gelten als das beste Instrument zur Darstellung der komplexen Natur städtischer pluvialer Überschwemmungen; sie sind jedoch rechenintensiv und zeitaufwändig. Diese anspruchsvollen Modelle machen groß angelegte Analysen und operationelle Vorhersagen unerschwinglich. Daher ist es von entscheidender Bedeutung, die Leistung anderer Methoden zu bewerten und zu vergleichen, die komplexe hydrodynamische Modelle ersetzen könnten. Die Ergebnisse dieser kumulativen Arbeit werden in drei Forschungsartikeln dargestellt. In der ersten Studie bewerte ich zwei topografiebasierte Methoden zur Kartierung von Überschwemmungen in Städten, die Fill-Spill-Merge-Methode (FSM) und den topografischen Nässeindex (TWI), indem ich sie mit einem hochentwickelten hydrodynamischen Modell vergleiche. Die FSM-Methode identifiziert überschwemmungsgefährdete Gebiete innerhalb topografischer Senken, während die TWI-Methode eine Maximum-Likelihood-Schätzung verwendet, um einen TWI-Schwellenwert (τ) auf der Grundlage von Überschwemmungskarten aus dem hydrodynamischen 2D-Modell zu kalibrieren. Die Ergebnisse zeigen, dass die FSM-Methode die TWI-Methode übertrifft. Anschließend werden die Vorteile und Grenzen beider Methoden aufgezeigt. Datengesteuerte Modelle stellen eine vielversprechende Alternative zu rechenintensiven hydrodynamischen Modellen dar. In der Literatur fehlt es jedoch an Benchmarking-Studien zur Bewertung der Leistung, Vorteile und Grenzen der verschiedenen Modelle. Die räumliche Übertragbarkeit von Modellen ist ein entscheidendes Problem. Die meisten Studien konzentrieren sich auf Flussüberschwemmungen, was wahrscheinlich auf die relative Verfügbarkeit von Abfluss- und Regenmesserdaten für Training und Validierung zurückzuführen ist. Außerdem betrachten sie diese Modelle als Black Boxes. In der zweiten Studie verwende ich ein Hochwasserinventar für die Stadt Berlin und 11 prädiktive Merkmale, die potenziell auf eine erhöhte pluviale Hochwassergefahr hinweisen, um die Anfälligkeit für pluviale Überschwemmungen in Städten zu kartieren. Dazu verwende ich ein Faltungsneuronales Netzwerk (CNN), ein Künstliches Neuronales Netzwerk (ANN) und die Benchmarking-Modelle Random Forest (RF) und Support Vector Machine (SVM). Ich untersuche den Einfluss der räumlichen Auflösung auf die implementierten Modelle, die Übertragbarkeit der Modelle im Raum und die Bedeutung der prädiktiven Merkmale. Die Ergebnisse zeigen, dass alle Modelle gut abschneiden und die RF-Modelle den anderen Modellen innerhalb und außerhalb des Trainingsbereichs überlegen sind. Die Modelle, die mit feiner räumlicher Auflösung (2 und 5 m) entwickelt wurden, konnten hochwassergefährdete Gebiete besser identifizieren. Schließlich zeigen die Ergebnisse, dass der Aspekt das wichtigste Vorhersagemerkmal für die CNN-Modelle ist, und die Höhe für die anderen Modelle. Während Hochwasseranfälligkeitskarten überschwemmungsgefährdete Gebiete identifizieren, stellen sie keine Hochwasservariablen wie Geschwindigkeit und Wassertiefe dar, die für ein effektives Hochwasserrisikomanagement notwendig sind. Um dieses Problem anzugehen, untersuche ich in der dritten Studie die Übertragbarkeit datengesteuerter Modelle auf die Vorhersage der Überschwemmungstiefe in städtischen Gebieten und die Fähigkeit der Modelle, ihre Vorhersagen durch Transfer-Learning-Techniken zu verbessern. Ich vergleiche die Leistung von RF- (das beste Modell in der vorherigen Studie) und CNN-Modellen anhand von 12 Vorhersagemerkmalen und den Ergebnissen eines hydrodynamischen Modells. Die Ergebnisse der dritten Studie deuten darauf hin, dass CNN-Modelle dazu neigen, die Zielfunktion auf dem Trainingsdatensatz zu verallgemeinern und zu glätten, während RF-Modelle unter Overfitting leiden. Daher sind RF-Modelle für Vorhersagen innerhalb der Trainingsbereiche überlegen, versagen aber außerhalb davon, während CNN-Modelle den relativen Leistungsverlust außerhalb der Trainingsdomänen kontrollieren können. Schließlich profitieren die CNN-Modelle mehr von Transfer-Learning-Techniken als RF-Modelle, was ihre Leistung außerhalb der Trainingsbereiche erhöht. Zusammenfassend lässt sich sagen, dass in dieser Arbeit sowohl topografiebasierte Methoden als auch datengesteuerte Modelle zur Kartierung von Überschwemmungen in Städten bewertet wurden. Weitere Studien sind jedoch von entscheidender Bedeutung, um Methoden zu entwickeln, die die Beschränkungen von 2D-hydrodynamischen Modellen vollständig überwinden. KW - urban pluvial flood KW - machine learning KW - deep learning KW - topography KW - tiefes Lernen KW - maschinelles Lernen KW - Topographie KW - städtische Überschwemmungen Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-598137 ER - TY - JOUR A1 - Smith, Taylor A1 - Bookhagen, Bodo T1 - Climatic and biotic controls on topographic asymmetry at the global scale JF - Journal of geophysical research : JGR, Earth surface N2 - Insolation differences play a primary role in controlling microclimate and vegetation cover, which together influence the development of topography. Topographic asymmetry (TA), or slope differences between terrain aspects, has been well documented in small-scale, field-based, and modeling studies. Here we combine a suite of environmental (e.g., vegetation, temperature, solar insolation) and topographic (e.g., elevation, drainage network) data to explore the driving mechanisms and markers of TA on a global scale. Using a novel empirical TA analysis method, we find that (1) steeper terrain has higher TA magnitudes, (2) globally, pole-facing terrain is on average steeper than equator-facing terrain, especially in mid-latitude, tectonically quiescent, and vegetated landscapes, and (3) high-elevation and low-temperature regions tend to have terrain steepened toward the equator. We further show that there are distinct differences in climate and vegetation cover across terrain aspects, and that TA is reflected in the size and form of fluvial drainage networks. Our work supports the argument that insolation asymmetries engender differences in local microclimates and vegetation on opposing terrain aspects, which broadly encourage the development of asymmetric topography across a range of lithologic, tectonic, geomorphic, and climatic settings. KW - erosion KW - freeze-thaw cycling KW - solar radiation KW - topographic asymmetry KW - topography KW - vegetation cover Y1 - 2021 U6 - https://doi.org/10.1029/2020JF005692 SN - 2169-9003 SN - 2169-9011 VL - 126 IS - 1 PB - American Geophysical Union CY - Washington ER -