TY - THES A1 - Böttle, Markus T1 - Coastal floods in view of sea level rise T1 - Küstenfluten im Hinblick auf steigende Meeresspiegel BT - assessing damage costs and adaptation measures BT - Abschätzung von Schadenskosten und Anpassungsmaßnahmen N2 - The sea level rise induced intensification of coastal floods is a serious threat to many regions in proximity to the ocean. Although severe flood events are rare they can entail enormous damage costs, especially when built-up areas are inundated. Fortunately, the mean sea level advances slowly and there is enough time for society to adapt to the changing environment. Most commonly, this is achieved by the construction or reinforcement of flood defence measures such as dykes or sea walls but also land use and disaster management are widely discussed options. Overall, albeit the projection of sea level rise impacts and the elaboration of adequate response strategies is amongst the most prominent topics in climate impact research, global damage estimates are vague and mostly rely on the same assessment models. The thesis at hand contributes to this issue by presenting a distinctive approach which facilitates large scale assessments as well as the comparability of results across regions. Moreover, we aim to improve the general understanding of the interplay between mean sea level rise, adaptation, and coastal flood damage. Our undertaking is based on two basic building blocks. Firstly, we make use of macroscopic flood-damage functions, i.e. damage functions that provide the total monetary damage within a delineated region (e.g. a city) caused by a flood of certain magnitude. After introducing a systematic methodology for the automatised derivation of such functions, we apply it to a total of 140 European cities and obtain a large set of damage curves utilisable for individual as well as comparative damage assessments. By scrutinising the resulting curves, we are further able to characterise the slope of the damage functions by means of a functional model. The proposed function has in general a sigmoidal shape but exhibits a power law increase for the relevant range of flood levels and we detect an average exponent of 3.4 for the considered cities. This finding represents an essential input for subsequent elaborations on the general interrelations of involved quantities. The second basic element of this work is extreme value theory which is employed to characterise the occurrence of flood events and in conjunction with a damage function provides the probability distribution of the annual damage in the area under study. The resulting approach is highly flexible as it assumes non-stationarity in all relevant parameters and can be easily applied to arbitrary regions, sea level, and adaptation scenarios. For instance, we find a doubling of expected flood damage in the city of Copenhagen for a rise in mean sea levels of only 11 cm. By following more general considerations, we succeed in deducing surprisingly simple functional expressions to describe the damage behaviour in a given region for varying mean sea levels, changing storm intensities, and supposed protection levels. We are thus able to project future flood damage by means of a reduced set of parameters, namely the aforementioned damage function exponent and the extreme value parameters. Similar examinations are carried out to quantify the aleatory uncertainty involved in these projections. In this regard, a decrease of (relative) uncertainty with rising mean sea levels is detected. Beyond that, we demonstrate how potential adaptation measures can be assessed in terms of a Cost-Benefit Analysis. This is exemplified by the Danish case study of Kalundborg, where amortisation times for a planned investment are estimated for several sea level scenarios and discount rates. N2 - Viele Regionen in Küstennähe sehen sich durch den Anstieg des mittleren Meeresspiegels einer erhöhten Hochwassergefahr ausgesetzt und die zunehmende Intensität extremer Flutereignisse stellt eine ernstzunehmende Bedrohung dar. Vor allem bei der Überschwemmung bebauter Gebiete können die resultierenden Schäden ein gewaltiges Ausmaß erreichen. Glücklicherweise steigt der mittlere Meeresspiegel langsam und es bleibt ausreichend Zeit sich an die verändernden Umweltbedingungen anzupassen. Dies geschieht üblicherweise durch den Bau oder die Verstärkung von Hochwasserschutzmaßnahmen wie z. B. Deichen oder Ufermauern aber auch angepasste Raumplanung und Katastrophenschutz sind vieldiskutierte Lösungsansätze. Obwohl die Folgenabschätzung des Meeresspiegelanstieges und die Entwicklung von entsprechenden Antwortstrategien zu den bedeutendsten Themen der Klimafolgenforschung gehören, bleiben globale Schadensschätzungen vage und stützen größtenteils auf den gleichen, wenigen Bewertungsmodellen. Diesem Umstand wollen wir mit der vorliegenden Arbeit Rechnung tragen und präsentieren einen eigenen Ansatz, der sowohl großskalige Abschätzungen als auch überregionale Vergleichbarkeit ermöglicht. Darüber hinaus leisten wir einen Beitrag zum allgemeinen Verständnis des Zusammenspiels zwischen dem mittleren Meeresspiegel, Anpassungsmaßnahmen und Flutschäden. Unser Vorhaben basiert auf zwei Grundbausteinen. Zum einen sind das makroskopische Flutschadensfunktionen, d. h. Schadensfunktionen zur Bestimmung des gesamten monetären Schadens in einem vorgegebenen Gebiet (z. B. einer Stadt) der durch eine Flut gewissen Ausmaßes verursacht wird. Dazu stellen wir einen systematischen Ansatz zur automatisierten Ermittlung solcher Kurven vor und bestimmen damit die Schadensfunktionen für 140 europäische Städte. Diese können sowohl für individuelle Schadensabschätzungen als auch für vergleichende, überregionale Studien herangezogen werden. Darüber hinaus ermöglicht die große Anzahl an Kurven eine grundlegende Charakterisierung des Anstieges der Schadensfunktion mit Hilfe eines funktionalen Modells. Das vorgeschlagene Modell ist im Allgemeinen s-förmig, weist jedoch für die relevanten Fluthöhen einen potenzgesetzartigen Anstieg auf und wir erhalten für die untersuchten Städte einen durchschnittlichen Exponenten von 3,4. Zur späteren Beschreibung der allgemeinen Zusammenhänge aller beteiligten Größen ist dieses Ergebnis von entscheidender Bedeutung. Der zweite grundlegende Baustein dieser Arbeit ist die Extremwerttheorie mittels derer wir das Auftreten von Flutereignissen schätzen und die in Verbindung mit einer Schadensfunktion die Wahrscheinlichkeitsverteilung der auftretenden Schäden im untersuchten Gebiet liefert. Da alle relevanten Parameter als variabel angenommen werden, bietet der beschriebene Ansatz größtmögliche Flexibilität und lässt sich auf beliebige Regionen anwenden. In Kopenhagen, beispielsweise, stellen wir bei einem Anstieg des mittleren Meeresspiegels von lediglich 11 cm bereits eine Verdopplung des jährlichen, zu erwarteten Schadens fest. Des Weiteren gelingt es uns, allgemeingültige funktionale Beziehungen zwischen den erwarteten Flutschäden und dem mittleren Meeresspiegel, sich verändernden Sturmbedingungen, sowie vorhandenen Schutzhöhen abzuleiten. Damit sind wir in der Lage, zukünftige Flutschäden auf Grundlage nur weniger Parameter zu schätzen: dem bereits erwähnten Exponenten der Schadensfuntion sowie den Extremwertparametern. Ähnliche Untersuchungen stellen wir zur Quantifizierung der aleatorischen Unsicherheit dieser Schätzungen an, wobei wir unter anderem einen Rückgang der Unsicherheit mit steigendem Meeresspiegel feststellen. Schlussendlich zeigen wir wie potenzielle Anpassungsmaßnahmen mit Hilfe einer Kosten-Nutzen-Analyse bewertet werden können. Dies wird anhand der dänischen Fallstudie Kalundborg veranschaulicht, für die wir die Amortisierungszeiten einer geplanten Investition für verschiedene Meeresspiegelszenarien und Diskontierungsraten untersuchen. KW - sea-level rise KW - flood damage KW - coastal flooding KW - Küstenfluten KW - Extremereignisse KW - Flutschäden KW - Meeresspiegelanstieg KW - Klimaanpassung Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-91074 ER - TY - THES A1 - Zeitz, Maria T1 - Modeling the future resilience of the Greenland Ice Sheet T1 - Numerische Modellierung der zukünftigen Resilienz des grönländischen Eisschildes BT - from the flow of ice to the interplay of feedbacks N2 - The Greenland Ice Sheet is the second-largest mass of ice on Earth. Being almost 2000 km long, more than 700 km wide, and more than 3 km thick at the summit, it holds enough ice to raise global sea levels by 7m if melted completely. Despite its massive size, it is particularly vulnerable to anthropogenic climate change: temperatures over the Greenland Ice Sheet have increased by more than 2.7◦C in the past 30 years, twice as much as the global mean temperature. Consequently, the ice sheet has been significantly losing mass since the 1980s and the rate of loss has increased sixfold since then. Moreover, it is one of the potential tipping elements of the Earth System, which might undergo irreversible change once a warming threshold is exceeded. This thesis aims at extending the understanding of the resilience of the Greenland Ice Sheet against global warming by analyzing processes and feedbacks relevant to its centennial to multi-millennial stability using ice sheet modeling. One of these feedbacks, the melt-elevation-feedback is driven by the temperature rise with decreasing altitudes: As the ice sheet melts, its thickness and surface elevation decrease, exposing the ice surface to warmer air and thus increasing the melt rates even further. The glacial isostatic adjustment (GIA) can partly mitigate this melt-elevation feedback as the bedrock lifts in response to an ice load decrease, forming the negative GIA feedback. In my thesis, I show that the interaction between these two competing feedbacks can lead to qualitatively different dynamical responses of the Greenland Ice Sheet to warming – from permanent loss to incomplete recovery, depending on the feedback parameters. My research shows that the interaction of those feedbacks can initiate self-sustained oscillations of the ice volume while the climate forcing remains constant. Furthermore, the increased surface melt changes the optical properties of the snow or ice surface, e.g. by lowering their albedo, which in turn enhances melt rates – a process known as the melt-albedo feedback. Process-based ice sheet models often neglect this melt-albedo feedback. To close this gap, I implemented a simplified version of the diurnal Energy Balance Model, a computationally efficient approach that can capture the first-order effects of the melt-albedo feedback, into the Parallel Ice Sheet Model (PISM). Using the coupled model, I show in warming experiments that the melt-albedo feedback almost doubles the ice loss until the year 2300 under the low greenhouse gas emission scenario RCP2.6, compared to simulations where the melt-albedo feedback is neglected, and adds up to 58% additional ice loss under the high emission scenario RCP8.5. Moreover, I find that the melt-albedo feedback dominates the ice loss until 2300, compared to the melt-elevation feedback. Another process that could influence the resilience of the Greenland Ice Sheet is the warming induced softening of the ice and the resulting increase in flow. In my thesis, I show with PISM how the uncertainty in Glen’s flow law impacts the simulated response to warming. In a flow line setup at fixed climatic mass balance, the uncertainty in flow parameters leads to a range of ice loss comparable to the range caused by different warming levels. While I focus on fundamental processes, feedbacks, and their interactions in the first three projects of my thesis, I also explore the impact of specific climate scenarios on the sea level rise contribution of the Greenland Ice Sheet. To increase the carbon budget flexibility, some warming scenarios – while still staying within the limits of the Paris Agreement – include a temporal overshoot of global warming. I show that an overshoot by 0.4◦C increases the short-term and long-term ice loss from Greenland by several centimeters. The long-term increase is driven by the warming at high latitudes, which persists even when global warming is reversed. This leads to a substantial long-term commitment of the sea level rise contribution from the Greenland Ice Sheet. Overall, in my thesis I show that the melt-albedo feedback is most relevant for the ice loss of the Greenland Ice Sheet on centennial timescales. In contrast, the melt-elevation feedback and its interplay with the GIA feedback become increasingly relevant on millennial timescales. All of these influence the resilience of the Greenland Ice Sheet against global warming, in the near future and on the long term. N2 - Das grönländische Eisschild ist die zweitgrößte Eismasse der Erde. Es fasst genug Eis, um den globalen Meeresspiegel um 7m anzuheben, wenn er vollständig schmilzt. Trotz seiner Größe ist es durch den vom Menschen verursachten Klimawandel immens gefährdet: Die Temperaturen über Grönland sind in den letzten 30 Jahren um mehr als 2,7◦C gestiegen, doppelt so stark wie im globalen Mittel. Daher verliert das Eisschild seit den 1980er Jahren an Masse und die Verlustrate hat sich seitdem versechsfacht. Zudem ist das grönländische Eisschild ein Kippelement des Erdsystems, es könnte sich unwiederbringlich verändern, wenn die globale Erwärmung einen Schwellwert überschreiten sollte. Ziel dieser Arbeit ist es, das Verständnis für die Resilienz des grönländischen Eisschildes zu erweitern, indem relevante Rückkopplungen und Prozesse analysiert werden. Eine dieser Rückkopplungen, die positive Schmelz-Höhen-Rückkopplung wird durch den Temperaturanstieg bei abnehmender Höhe angetrieben: Wenn der Eisschild schmilzt, nehmen seine Dicke und die Oberflächenhöhe ab, wodurch die Eisoberfläche wärmerer Luft ausgesetzt wird und die Schmelzraten noch weiter ansteigen. Die glaziale isostatische Anpassung (GIA) kann die Schmelz-Höhen-Rückkopplung teilweise abschwächen, da sich der Erdmantel als Reaktion auf die abnehmende Eislast hebt und so die negative GIA-Rückkopplung bildet. Ich zeige, dass die Interaktion zwischen diesen beiden konkurrierenden Rückkopplungen zu qualitativ unterschiedlichem dynamischen Verhalten des grönländischen Eisschildes bei Erwärmung führen kann - von permanentem Verlust bis hin zu unvollständiger Erholung. Das Zusammenspiel dieser Rückkopplungen kann zudem Oszillationen des Eisvolumens in einem konstanten Klima auslösen. Die verstärkte Oberflächenschmelze ändert die optischen Eigenschaften von Schnee und Eis und verringert deren Albedo, was wiederum die Schmelzraten erhöht – die sogenannte Schmelz-Albedo Rückkopplung. Da viele Eisschildmodelle diese vernachlässigen, habe ich eine vereinfachte Version des tageszeitlichen Energiebilanzmodells, welches die Effekte der Schmelz-Albedo-Rückkopplung erster Ordnung erfassen kann, in das Eisschildmodell PISM implementiert. Mithilfe des gekoppelten Modells zeige ich, dass die Schmelz-Albedo-Rückkopplung den Eisverlust bis zum Jahr 2300 im moderaten Klimaszenario RCP2.6 fast verdoppelt und im RCP8.5-Szenario, welches von starken Emissionen ausgeht, bis zu 58% zusätzlichen Eisverlust verursacht, im Vergleich zu Simulationen in denen die Schmelz-Albedo-Rückkopplung vernachlässigt wird. Bis zum Jahr 2300 trägt die Schmelz-Albedo-Rückkopplung mehr zum Eisverlust bei als die Schmelz-Höhen-Rückkopplung. Ein weiterer Prozess, der die Widerstandsfähigkeit des grönländischen Eisschilds beeinflussen könnte, ist die Erweichung des Eises bei steigenden Temperaturen, sowie die daraus resultierende Zunahme des Eisflusses. In meiner Dissertation zeige ich, wie sich die parametrische Unsicherheit in dem Flussgesetz auf die Ergebnisse von PISM Simulationen bei Erwärmung auswirkt. In einem idealisierten, zweidimensionalen Experiment mit fester klimatischer Massenbilanz führt die Unsicherheit in den Strömungsparametern zu einer Bandbreite des Eisverlustes, die mit der Bandbreite durch unterschiedliche Erwärmungen vergleichbar ist. Neben den grundsätzlichen Prozessen und Rückkopplungen untersuchte ich auch die Auswirkungen konkreter Klimaszenarien auf den Eisverlust von Grönland. Um die Flexibilität des Kohlenstoffbudgets zu erhöhen sehen einige Erwärmungsszenarien eine temporäre Überschreitung der globalen Temperaturen über das Ziel von 1,5◦C vor. Ich zeige, dass eine solche Temperaturerhöhung den kurz- und langfristigen Eisverlust von Grönland um mehrere Zentimeter erhöht. Der langfristige Meeresspiegelanstieg ist auf die anhaltende Temperaturerhöhung in hohen Breitengraden zurückzuführen. Solche Prozesse führen zu einem langfristigen und bereits festgelegtem Meeresspiegelanstieg, selbst wenn die Temperaturen nicht weiter steigen. Insgesamt zeige ich in meiner Arbeit, dass die Schmelz-Albedo-Rückkopplung für den Eisverlust des grönländischen Eisschilds in den nächsten Jahrhunderten am wichtigsten ist. Im Gegensatz dazu werden die Schmelz-Höhen-Rückkopplung und ihr Zusammenspiel mit der GIA-Rückkopplung auf längeren Zeiträumen immer relevanter. KW - Greenland Ice Sheet KW - ice-flow modeling KW - sea-level rise KW - Grönländisches Eisschild KW - Computersimulation KW - Meeresspiegelanstieg Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-568839 ER -