TY - GEN A1 - Burek, Katja A1 - Dengler, Joachim A1 - Emmerling, Franziska A1 - Feldmann, Ines A1 - Kumke, Michael Uwe A1 - Stroh, Julia T1 - Lanthanide Luminescence Revealing the Phase Composition in Hydrating Cementitious Systems T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The hydration process of Portland cement in a cementitious system is crucial for development of the high‐quality cement‐based construction material. Complementary experiments of X‐ray diffraction analysis (XRD), scanning electron microscopy (SEM) and time‐resolved laser fluorescence spectroscopy (TRLFS) using europium (Eu(III)) as an optical probe are used to analyse the hydration process of two cement systems in the absence and presence of different organic admixtures. We show that different analysed admixtures and the used sulphate carriers in each cement system have a significant influence on the hydration process, namely on the time‐dependence in the formation of different hydrate phases of cement. Moreover, the effect of a particular admixture is related to the type of sulphate carrier used. The quantitative information on the amounts of the crystalline cement paste components is accessible via XRD analysis. Distinctly different morphologies of ettringite and calcium−silicate−hydrates (C−S−H) determined by SEM allow visual conclusions about formation of these phases at particular ageing times. The TRLFS data provides information about the admixture influence on the course of the silicate reaction. The dip in the dependence of the luminescence decay times on the hydration time indicates the change in the structure of C−S−H in the early hydration period. Complementary information from XRD, SEM and TRLFS provides detailed information on distinct periods of the cement hydration process. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 808 KW - cement admixtures KW - cement hydration KW - Europium KW - luminescence KW - SEM KW - X-ray diffraction Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-442433 SN - 1866-8372 IS - 808 ER - TY - JOUR A1 - Burek, Katja A1 - Dengler, Joachim A1 - Emmerling, Franziska A1 - Feldmann, Ines A1 - Kumke, Michael Uwe A1 - Stroh, Julia T1 - Lanthanide Luminescence Revealing the Phase Composition in Hydrating Cementitious Systems JF - ChemistryOpen N2 - The hydration process of Portland cement in a cementitious system is crucial for development of the high‐quality cement‐based construction material. Complementary experiments of X‐ray diffraction analysis (XRD), scanning electron microscopy (SEM) and time‐resolved laser fluorescence spectroscopy (TRLFS) using europium (Eu(III)) as an optical probe are used to analyse the hydration process of two cement systems in the absence and presence of different organic admixtures. We show that different analysed admixtures and the used sulphate carriers in each cement system have a significant influence on the hydration process, namely on the time‐dependence in the formation of different hydrate phases of cement. Moreover, the effect of a particular admixture is related to the type of sulphate carrier used. The quantitative information on the amounts of the crystalline cement paste components is accessible via XRD analysis. Distinctly different morphologies of ettringite and calcium−silicate−hydrates (C−S−H) determined by SEM allow visual conclusions about formation of these phases at particular ageing times. The TRLFS data provides information about the admixture influence on the course of the silicate reaction. The dip in the dependence of the luminescence decay times on the hydration time indicates the change in the structure of C−S−H in the early hydration period. Complementary information from XRD, SEM and TRLFS provides detailed information on distinct periods of the cement hydration process. KW - cement admixtures KW - cement hydration KW - Europium KW - luminescence KW - SEM KW - X-ray diffraction Y1 - 2019 U6 - https://doi.org/10.1002/open.201900249 SN - 2191-1363 VL - 8 IS - 12 SP - 1441 EP - 1452 PB - Wiley-VCH-Verl. CY - Weinheim ER - TY - JOUR A1 - Herzog, Marc A1 - Bojahr, Andre A1 - Goldshteyn, J. A1 - Leitenberger, Wolfram A1 - Vrejoiu, I. A1 - Khakhulin, D. A1 - Wulff, M. A1 - Shayduk, Roman A1 - Gaal, P. A1 - Bargheer, Matias T1 - Detecting optically synthesized quasi-monochromatic sub-terahertz phonon wavepackets by ultrafast x-ray diffraction JF - Applied physics letters N2 - We excite an epitaxial SrRuO3 thin film transducer by a pulse train of ultrashort laser pulses, launching coherent sound waves into the underlying SrTiO3 substrate. Synchrotron-based x-ray diffraction (XRD) data exhibiting separated sidebands to the substrate peak evidence the excitation of a quasi-monochromatic phonon wavepacket with sub-THz central frequency. The frequency and bandwidth of this sound pulse can be controlled by the optical pulse train. We compare the experimental data to combined lattice dynamics and dynamical XRD simulations to verify the coherent phonon dynamics. In addition, we observe a lifetime of 130 ps of such sub-THz phonons in accordance with the theory. KW - acoustic waves KW - epitaxial layers KW - phonon dispersion relations KW - terahertz waves KW - thin film devices KW - X-ray diffraction Y1 - 2012 U6 - https://doi.org/10.1063/1.3688492 SN - 0003-6951 VL - 100 IS - 9 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Kapernaum, Nadia A1 - Lange, Alyna A1 - Ebert, Max A1 - Grunwald, Marco A. A1 - Häge, Christian A1 - Marino, Sebastian A1 - Zens, Anna A1 - Taubert, Andreas A1 - Gießelmann, Frank A1 - Laschat, Sabine T1 - Current topics in ionic liquid crystals JF - ChemPlusChem N2 - Ionic liquid crystals (ILCs), that is, ionic liquids exhibiting mesomorphism, liquid crystalline phases, and anisotropic properties, have received intense attention in the past years. Among others, this is due to their special properties arising from the combination of properties stemming from ionic liquids and from liquid crystalline arrangements. Besides interesting fundamental aspects, ILCs have been claimed to have tremendous application potential that again arises from the combination of properties and architectures that are not accessible otherwise, or at least not accessible easily by other strategies. The current review highlights recent developments in ILC research, starting with some key fundamental aspects. Further subjects covered include the synthesis and variations of modern ILCs, including the specific tuning of their mesomorphic behavior. The review concludes with reflections on some applications that may be within reach for ILCs and finally highlights a few key challenges that must be overcome prior and during true commercialization of ILCs. KW - electrochemistry KW - ionic liquid crystals KW - mesogen mesophases KW - self-assembly KW - X-ray diffraction Y1 - 2021 U6 - https://doi.org/10.1002/cplu.202100397 SN - 2192-6506 VL - 87 IS - 1 PB - Wiley-VCH CY - Weinheim ER - TY - GEN A1 - Kashkarov, Egor B. A1 - Obrosov, Aleksei A1 - Sutygina, Alina N. A1 - Uludintceva, Elena A1 - Mitrofanov, Andrei A1 - Weiß, Sabine T1 - Hydrogen permeation, and mechanical and tribological behavior, of CrNx coatings deposited at various bias voltages on IN718 by direct current reactive sputtering T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - In the current work, the microstructure, hydrogen permeability, and properties of chromium nitride (CrNx) thin films deposited on the Inconel 718 superalloy using direct current reactive sputtering are investigated. The influence of the substrate bias voltage on the crystal structure, mechanical, and tribological properties before and after hydrogen exposure was studied. It was found that increasing the substrate bias voltage leads to densification of the coating. X-ray diffraction (XRD) results reveal a change from mixed fcc-CrN + hcp-Cr2N to the approximately stoichiometric hcp-Cr2N phase with increasing substrate bias confirmed by wavelength-dispersive X-ray spectroscopy (WDS). The texture coefficients of (113), (110), and (111) planes vary significantly with increasing substrate bias voltage. The hydrogen permeability was measured by gas-phase hydrogenation. The CrN coating deposited at 60 V with mixed c-CrN and (113) textured hcp-Cr2N phases exhibits the lowest hydrogen absorption at 873 K. It is suggested that the crystal orientation is only one parameter influencing the permeation resistance of the CrNx coating together with the film structure, the presence of mixing phases, and the packing density of the structure. After hydrogenation, the hardness increased for all coatings, which could be related to the formation of a Cr2O3 oxide film on the surface, as well as the defect formation after hydrogen loading. Tribological tests reveal that hydrogenation leads to a decrease of the friction coefficient by up to 40%. The lowest value of 0.25 +/- 0.02 was reached for the CrNx coating deposited at 60 V after hydrogenation. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1017 KW - CrNx coatings KW - Physical Vapour Deposition (PVD) KW - hydrogenation KW - Tribology KW - mechanical properties KW - X-ray diffraction Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-459846 SN - 1866-8372 IS - 1017 ER - TY - JOUR A1 - Schwarze, Thomas A1 - Traeger, Juliane A1 - Kelling, Alexandra A1 - Schilde, Uwe A1 - Holdt, Hans-Jürgen T1 - Macrocyclic dithiomaleonitriles for an efficient PdCl2 coordination JF - Inorganica chimica acta : the international inorganic chemistry journal N2 - We have synthesized a set of new unsaturated macrocyclic dithioethers with an increasing number of flexible methylene units 1-7 (Scheme 2) to investigate the correlation between the ring size of these ligands, the chelation effect and the consequences for an efficient PdCl2 coordination. The dithioethers 1-7 and the complex [PdCl2(4)]center dot CHCl3 were characterized by X-ray diffraction analysis. The crystal structures of 1-7 show that 2-7 are better preorganized chelating ligands for an exocyclic PdCl2 coordination than 1. The chelation effect of 1-7, the orientation of the sulfur atoms and the S center dot center dot center dot S donor distances, are influenced by the flexibility of the methylene units. In this series the unsaturated macrocyclic ligands 5 and 6 are the best chelating ligands for an efficient PdCl2 coordination. Comparative solvent extraction experiments with mn-12S(2)O(2) (mn = maleonitrile) reveal that the low interface activity of the new ligands reduces the extraction rate. However, a comparison with open-chain dithiomaleonitriles shows the impact of the macrocyclic effect of 4 and 5 on the extraction yield. KW - Thioether ligands KW - Palladium KW - Synthesis KW - X-ray diffraction KW - Chelation effect KW - Extraction Y1 - 2013 U6 - https://doi.org/10.1016/j.ica.2013.08.020 SN - 0020-1693 SN - 1873-3255 VL - 408 IS - 2 SP - 53 EP - 58 PB - Elsevier CY - Lausanne ER - TY - THES A1 - Tchoumba Kwamen, Christelle Larodia T1 - Investigating the dynamics of polarization reversal in ferroelectric thin films by time-resolved X-ray diffraction T1 - Untersuchung der Dynamik der Polarisationsumkehr in ferroelektrischen Dünnschichten durch zeitaufgelöste Röntgenbeugung N2 - Ferroic materials have attracted a lot of attention over the years due to their wide range of applications in sensors, actuators, and memory devices. Their technological applications originate from their unique properties such as ferroelectricity and piezoelectricity. In order to optimize these materials, it is necessary to understand the coupling between their nanoscale structure and transient response, which are related to the atomic structure of the unit cell. In this thesis, synchrotron X-ray diffraction is used to investigate the structure of ferroelectric thin film capacitors during application of a periodic electric field. Combining electrical measurements with time-resolved X-ray diffraction on a working device allows for visualization of the interplay between charge flow and structural motion. This constitutes the core of this work. The first part of this thesis discusses the electrical and structural dynamics of a ferroelectric Pt/Pb(Zr0.2,Ti0.8)O3/SrRuO3 heterostructure during charging, discharging, and polarization reversal. After polarization reversal a non-linear piezoelectric response develops on a much longer time scale than the RC time constant of the device. The reversal process is inhomogeneous and induces a transient disordered domain state. The structural dynamics under sub-coercive field conditions show that this disordered domain state can be remanent and can be erased with an appropriate voltage pulse sequence. The frequency-dependent dynamic characterization of a Pb(Zr0.52,Ti0.48)O3 layer, at the morphotropic phase boundary, shows that at high frequency, the limited domain wall velocity causes a phase lag between the applied field and both the structural and electrical responses. An external modification of the RC time constant of the measurement delays the switching current and widens the electromechanical hysteresis loop while achieving a higher compressive piezoelectric strain within the crystal. In the second part of this thesis, time-resolved reciprocal space maps of multiferroic BiFeO3 thin films were measured to identify the domain structure and investigate the development of an inhomogeneous piezoelectric response during the polarization reversal. The presence of 109° domains is evidenced by the splitting of the Bragg peak. The last part of this work investigates the effect of an optically excited ultrafast strain or heat pulse propagating through a ferroelectric BaTiO3 layer, where we observed an additional current response due to the laser pulse excitation of the metallic bottom electrode of the heterostructure. N2 - Ferroika haben aufgrund vielfältiger Anwendungsmöglichkeiten in Sensoren, Motoren und Speichermedien in den letzten Jahren viel Aufmerksamkeit erhalten. Das Interesse für technologische Anwendungen ist in ihren einzigartigen Eigenschaften wie Ferroelektrizität und Piezoelektrizität begründet. Um die Eigenschaften dieser Materialien zu optimieren ist es notwendig, die Kopplung zwischen ihrer Nanostruktur und der zeitabhängigen Antwort auf die Anregung zu verstehen, welcher von der Atomstruktur der Einheitszelle abhängig ist. In dieser Arbeit wird Röntgenbeugung an einem Synchrotron verwendet, um die Struktur eines ferroelektrischen Dünnschichtkondensators während eines angelegten elektrischen Feld zu beobachten. Den Kern dieser Arbeit bildet die Kombination aus elektrischen zeitaufgelösten Röntgenbeugungsmessungen an einem betriebsfähigen Kondensator, was die Visualisierung des Zusammenspiels zwischen Ladungsbewegung und Strukturdynamik ermöglicht. Der erste Teil der Arbeit befasst sich mit der elektrischen und strukturellen Dynamik einer ferroelektrischen Pt/Pb(Zr0.2,Ti0.8)O3/SrRuO3 Heterostruktur während des Ladens, Entladens und der Polarisationsumkehr. Nach der Umkehr der Polarisation bildet sich auf einer längeren Zeitskala als die RC-Zeitkonstante der Probe ein nichtlineares piezoelektrisches Signal aus. Der Umkehrungsprozess ist inhomogen und induziert einen vorübergehenden Zustand ungeordneter Domänen. Die strukturelle Dynamik mit einem angelegten elektrischen Feld unterhalb des Koerzitivfelds zeigt, dass dieser ungeordnete Zustand remanent sein kann und mit einer entsprechenden Abfolge von Spannungspulsen wieder entfernt werden kann. Die frequenzabhängige Charakterisierung der Dynamik einer Pb(Zr0.52,Ti0.48)O3 Schicht mit einer Zusammensetzung, die der morphotropen Phasengrenze entspricht, zeigt, dass bei hohen Frequenzen die begrenzte Domänenwandgeschwindigkeit eine Phasenverzögerung zwischen dem angelegten Feld und dem strukturellen sowie dem elektrischen Signal verursacht. Eine externe Änderung der RC-Zeitkonstante verzögert den Schaltstrom und verbreitert die elektromechanische Hysteresekurve, während im Kristall eine höhere kompressive piezoeletrische Spannung erzeugt wird. In dem zweiten Teil dieser Arbeit wurde der reziproke Raum von multiferroischen dünnen BiFeO3 Filmen vermessen, um die Domänenstruktur zu identifizieren und die Entwicklung eines inhomogenen piezoelektrischen Signals während der Polarisationsumkehr zu untersuchen. Das Aufspalten des Bragg Reflexes ist ein Hinweis auf die Existenz von 109° Domänen. Der letzte Teil der Arbeit beschäftigt sich mit dem Effekt, den ein durch optische Anregung erzeugter ultraschneller Verspannungs- oder Wärmepuls hervorruft, der durch eine ferroelektrische BaTiO3 Schicht propagiert. Dabei wurde durch die Anregung der unteren metallischen Elektrode der Heterostruktur durch den Laserpuls ein zusätzliches Ladungssignal beobachtet. KW - ferroelectrics KW - X-ray diffraction KW - structural dynamics KW - Ferroelektrika KW - Röntgenbeugung KW - Strukturdynamik Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-427815 ER - TY - JOUR A1 - Uchida, Ryusuke A1 - Binet, Silvia A1 - Arora, Neha A1 - Jacopin, Gwenole A1 - Alotaibi, Mohammad Hayal A1 - Taubert, Andreas A1 - Zakeeruddin, Shaik Mohammed A1 - Dar, M. Ibrahim A1 - Graetzel, Michael T1 - Insights about the Absence of Rb Cation from the 3D Perovskite Lattice BT - Effect on the Structural, Morphological, and Photophysical Properties and Photovoltaic Performance JF - Small N2 - Efficiencies >20% are obtained from the perovskite solar cells (PSCs) employing Cs+ and Rb+ based perovskite compositions; therefore, it is important to understand the effect of these inorganic cations specifically Rb+ on the properties of perovskite structures. Here the influence of Cs+ and Rb+ is elucidated on the structural, morphological, and photophysical properties of perovskite structures and the photovoltaic performances of resulting PSCs. Structural, photoluminescence (PL), and external quantum efficiency studies establish the incorporation of Cs+ (x < 10%) but amply rule out the possibility of Rb-incorporation into the MAPbI(3) (MA = CH3NH3+) lattice. Moreover, morphological studies and time-resolved PL show that both Cs+ and Rb+ detrimentally affect the surface coverage of MAPbI(3) layers and charge-carrier dynamics, respectively, by influencing nucleation density and by inducing nonradiative recombination. In addition, differential scanning calorimetry shows that the transition from orthorhombic to tetragonal phase occurring around 160 K requires more thermal energy for the Cs-containing MAPbI(3) systems compared to the pristine MAPbI(3). Investigation including mixed halide (I/Br) and mixed cation A-cation based compositions further confirms the absence of Rb+ from the 3D-perovskite lattice. The fundamental insights gained through this work will be of great significance to further understand highly promising perovskite compositions. KW - cation miscibility KW - cesium cation KW - perovskite solar cells KW - rubidium cation KW - X-ray diffraction Y1 - 2018 U6 - https://doi.org/10.1002/smll.201802033 SN - 1613-6810 SN - 1613-6829 VL - 14 IS - 36 PB - Wiley-VCH CY - Weinheim ER - TY - THES A1 - von Reppert, Alexander T1 - Magnetic strain contributions in laser-excited metals studied by time-resolved X-ray diffraction T1 - Untersuchung magnetischer Beiträge zur Ausdehnung laserangeregter Metalle mittels zeitaufgelöster Röntgenbeugungsexperimente N2 - In this work I explore the impact of magnetic order on the laser-induced ultrafast strain response of metals. Few experiments with femto- or picosecond time-resolution have so far investigated magnetic stresses. This is contrasted by the industrial usage of magnetic invar materials or magnetostrictive transducers for ultrasound generation, which already utilize magnetostrictive stresses in the low frequency regime. In the reported experiments I investigate how the energy deposition by the absorption of femtosecond laser pulses in thin metal films leads to an ultrafast stress generation. I utilize that this stress drives an expansion that emits nanoscopic strain pulses, so called hypersound, into adjacent layers. Both the expansion and the strain pulses change the average inter-atomic distance in the sample, which can be tracked with sub-picosecond time resolution using an X-ray diffraction setup at a laser-driven Plasma X-ray source. Ultrafast X-ray diffraction can also be applied to buried layers within heterostructures that cannot be accessed by optical methods, which exhibit a limited penetration into metals. The reconstruction of the initial energy transfer processes from the shape of the strain pulse in buried detection layers represents a contribution of this work to the field of picosecond ultrasonics. A central point for the analysis of the experiments is the direct link between the deposited energy density in the nano-structures and the resulting stress on the crystal lattice. The underlying thermodynamical concept of a Grüneisen parameter provides the theoretical framework for my work. I demonstrate how the Grüneisen principle can be used for the interpretation of the strain response on ultrafast timescales in various materials and that it can be extended to describe magnetic stresses. The class of heavy rare-earth elements exhibits especially large magnetostriction effects, which can even lead to an unconventional contraction of the laser-excited transducer material. Such a dominant contribution of the magnetic stress to the motion of atoms has not been demonstrated previously. The observed rise time of the magnetic stress contribution in Dysprosium is identical to the decrease in the helical spin-order, that has been found previously using time-resolved resonant X-ray diffraction. This indicates that the strength of the magnetic stress can be used as a proxy of the underlying magnetic order. Such magnetostriction measurements are applicable even in case of antiparallel or non-collinear alignment of the magnetic moments and a vanishing magnetization. The strain response of metal films is usually determined by the pressure of electrons and lattice vibrations. I have developed a versatile two-pulse excitation routine that can be used to extract the magnetic contribution to the strain response even if systematic measurements above and below the magnetic ordering temperature are not feasible. A first laser pulse leads to a partial ultrafast demagnetization so that the amplitude and shape of the strain response triggered by the second pulse depends on the remaining magnetic order. With this method I could identify a strongly anisotropic magnetic stress contribution in the magnetic data storage material iron-platinum and identify the recovery of the magnetic order by the variation of the pulse-to-pulse delay. The stark contrast of the expansion of iron-platinum nanograins and thin films shows that the different constraints for the in-plane expansion have a strong influence on the out-of-plane expansion, due to the Poisson effect. I show how such transverse strain contributions need to be accounted for when interpreting the ultrafast out-of-plane strain response using thermal expansion coefficients obtained in near equilibrium conditions. This work contributes an investigation of magnetostriction on ultrafast timescales to the literature of magnetic effects in materials. It develops a method to extract spatial and temporal varying stress contributions based on a model for the amplitude and shape of the emitted strain pulses. Energy transfer processes result in a change of the stress profile with respect to the initial absorption of the laser pulses. One interesting example occurs in nanoscopic gold-nickel heterostructures, where excited electrons rapidly transport energy into a distant nickel layer, that takes up much more energy and expands faster and stronger than the laser-excited gold capping layer. Magnetic excitations in rare earth materials represent a large energy reservoir that delays the energy transfer into adjacent layers. Such magneto-caloric effects are known in thermodynamics but not extensively covered on ultrafast timescales. The combination of ultrafast X-ray diffraction and time-resolved techniques with direct access to the magnetization has a large potential to uncover and quantify such energy transfer processes. N2 - In dieser Arbeit untersuche ich den Einfluss magnetischer Ordnung auf die laser-induzierte, ultraschnelle Ausdehnung von Metallen. In Experimenten mit Femto- oder Pikosekunden Zeitauflösung sind magnetische Drücke bisher kaum erforscht. Dies steht im Kontrast zur industriellen Verwendung von magnetischen Invar Materialien oder magnetostriktiven Ultraschallgebern, in denen magnetische Drücke bereits in niedrigeren Frequenzbereichen Anwendung finden. In meinen Experimenten untersuche ich, wie der Energieeintrag durch die Absorption von Femtosekunden-Laserpulsen in dünnen Metallschichten zu einem ultraschnellen Druckanstieg führt. Dabei nutze ich, dass der Druckanstieg zu einer Ausdehnung führt, welche Deformationswellen auf der Nanometerskala, sogenannte Hyperschallpulse, in angrenzende Schichten aussendet. Sowohl die Ausdehnung als auch die Deformationspulse ändern den mittleren Abstand zwischen den Atomen in der Probe, welcher mittels Röntgenbeugung an einer Laser-getriebenen Plasma-Röntgenquelle mit einer Subpikosekunden-Zeitauflösung detektiert wird. Das Verfahren der ultraschnellen Röntgenbeugung gelingt auch in Heterostrukturen mit vergrabenen Detektionsschichten, zu denen optische Methoden aufgrund ihrer limitierter Eindringtiefe in Metallen keinen Zugang haben. Ein Beitrag dieser Arbeit zum Feld der Pikosekunden-Akustik ist es, aus der Ausdehnung einer solchen Detektionsschicht Rückschlüsse auf die initialen Energietransferprozesse zu ziehen. Der direkte Zusammenhang zwischen der eingebrachten Energiedichte in die Nanostrukturen und dem resultierenden Druck auf das Atomgitter ist ein zentraler Punkt in meiner Analyse der Experimente. Das zu Grunde liegende thermodynamische Konzept des Grüneisen-Parameters bildet den theoretischen Kontext meiner Publikationen. Anhand verschiedener Materialien demonstriere ich, wie dieses Prinzip auch zur Analyse der Ausdehnung auf ultraschnellen Zeitskalen verwendet werden kann und sich auch auf magnetische Drücke übertragen lässt. Insbesondere in der Materialklasse der schweren, seltenen Erdelemente sind Magnetostriktionseffekte sehr groß und führen dort sogar zu einem ungewöhnlichen Zusammenziehen des Materials nach der Laseranregung. Solch ein bestimmender Einfluss des magnetischen Drucks auf die Atombewegung ist bisher nicht gezeigt worden. Die Zeitskala des magnetischen Druckanstiegs entspricht dabei der beobachteten Abnahme der helikalen Spin-Ordnung, welche zuvor mittels zeitaufgelöster, resonanter Röntgenbeugung ermittelt wurde. Dies zeigt, dass die Stärke des magnetischen Drucks als Maß für magnetische Ordnung dienen kann, insbesondere auch im Fall von antiparalleler oder nicht-kollinearer Ordnung der magnetischen Momente in Proben mit verschwindender Magnetisierung. In Metallfilmen ist die Dehnung des Atomgitters in der Regel durch Druck von Elektronen und Gitterschwingungen geprägt. Um den magnetischen Druckbeitrag auch in solchen Fällen zu extrahieren, in denen systematische Experimente oberhalb und unterhalb der magnetischen Ordnungstemperatur nicht praktikabel sind, habe ich ein neuartiges Doppelpuls-Anregungsverfahren entwickelt, welches allgemein für die Untersuchung von Phasenübergängen nützlich ist. Der Energieeintrag durch den ersten Laserpuls führt dabei zu einer partiellen, ultraschnellen Demagnetisierung, sodass die Amplitude und Form der Gitterausdehnung nach dem zweiten Puls von der Stärke des verbliebenen magnetischen Drucks und somit von der verbliebenen magnetischen Ordnung abhängt. Mit dieser Methode ist es möglich geworden, einen stark richtungsabhängigen, magnetischen Druckbeitrag im Speichermedium Eisen-Platin zu identifizieren und mittels Variation des Puls-zu-Puls Abstands auch die Rückkehr der magnetischen Ordnung zu zeigen. Die unterschiedliche Ausdehnung von Eisen-Platin Nanopartikeln und dünnen Filmen zeigt dabei, dass die verschiedenen Zwangsbedingungen für die Ausdehnung entlang der Probenoberfläche aufgrund des Poisson-Effekts einen entscheidenden Einfluss auf die ultraschnelle Ausdehnung senkrecht zur Probenoberfläche hat. Ich analysiere, wie die zugrunde liegende Querkontraktion bei der Interpretation der ultraschnellen Ausdehnung auf der Basis von thermischen Ausdehnungskoeffizienten im Quasi-Gleichgewicht berücksichtigt werden kann. Meine Arbeit erweitert die Literatur um einen Beitrag zur ultraschnellen Magnetostriktion und entwickelt eine Methodik mittels derer räumlich und zeitlich variierende Druckbeiträge anhand einer Modellierung der Form der Deformationswellen extrahiert werden können. Energietransferprozesse spiegeln sich dabei durch eine Änderung des Druckprofils gegenüber dem Absorptionsprofil der Laserpulse wider. KW - lattice dynamics KW - magnetism KW - ultrafast KW - X-ray diffraction KW - Gitterdynamik KW - Magnetismus KW - ultraschnell KW - Röntgenbeugung Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-535582 ER - TY - THES A1 - Zeuschner, Steffen Peer T1 - Magnetoacoustics observed with ultrafast x-ray diffraction N2 - In the present thesis I investigate the lattice dynamics of thin film hetero structures of magnetically ordered materials upon femtosecond laser excitation as a probing and manipulation scheme for the spin system. The quantitative assessment of laser induced thermal dynamics as well as generated picosecond acoustic pulses and their respective impact on the magnetization dynamics of thin films is a challenging endeavor. All the more, the development and implementation of effective experimental tools and comprehensive models are paramount to propel future academic and technological progress. In all experiments in the scope of this cumulative dissertation, I examine the crystal lattice of nanoscale thin films upon the excitation with femtosecond laser pulses. The relative change of the lattice constant due to thermal expansion or picosecond strain pulses is directly monitored by an ultrafast X-ray diffraction (UXRD) setup with a femtosecond laser-driven plasma X-ray source (PXS). Phonons and spins alike exert stress on the lattice, which responds according to the elastic properties of the material, rendering the lattice a versatile sensor for all sorts of ultrafast interactions. On the one hand, I investigate materials with strong magneto-elastic properties; The highly magnetostrictive rare-earth compound TbFe2, elemental Dysprosium or the technological relevant Invar material FePt. On the other hand I conduct a comprehensive study on the lattice dynamics of Bi1Y2Fe5O12 (Bi:YIG), which exhibits high-frequency coherent spin dynamics upon femtosecond laser excitation according to the literature. Higher order standing spinwaves (SSWs) are triggered by coherent and incoherent motion of atoms, in other words phonons, which I quantified with UXRD. We are able to unite the experimental observations of the lattice and magnetization dynamics qualitatively and quantitatively. This is done with a combination of multi-temperature, elastic, magneto-elastic, anisotropy and micro-magnetic modeling. The collective data from UXRD, to probe the lattice, and time-resolved magneto-optical Kerr effect (tr-MOKE) measurements, to monitor the magnetization, were previously collected at different experimental setups. To improve the precision of the quantitative assessment of lattice and magnetization dynamics alike, our group implemented a combination of UXRD and tr-MOKE in a singular experimental setup, which is to my knowledge, the first of its kind. I helped with the conception and commissioning of this novel experimental station, which allows the simultaneous observation of lattice and magnetization dynamics on an ultrafast timescale under identical excitation conditions. Furthermore, I developed a new X-ray diffraction measurement routine which significantly reduces the measurement time of UXRD experiments by up to an order of magnitude. It is called reciprocal space slicing (RSS) and utilizes an area detector to monitor the angular motion of X-ray diffraction peaks, which is associated with lattice constant changes, without a time-consuming scan of the diffraction angles with the goniometer. RSS is particularly useful for ultrafast diffraction experiments, since measurement time at large scale facilities like synchrotrons and free electron lasers is a scarce and expensive resource. However, RSS is not limited to ultrafast experiments and can even be extended to other diffraction techniques with neutrons or electrons. N2 - In der vorliegenden Arbeit untersuche ich die Gitterdynamik von magnetisch geordneten und dünnen Filmen, deren Spinsystem mit Femtosekunden-Laserpulsen angeregt und untersucht wird. Die Quantifizierung der laserinduzierten thermischen Dynamik, der erzeugten Pikosekunden-Schallpulse sowie deren jeweiliger Einfluss auf die Magnetisierungsdynamik ist ein schwieriges Unterfangen. Umso mehr ist die Entwicklung und Anwendung von effizienten experimentellen Konzepten und umfangreichen Modellen grundlegend für das Antreiben des zukünftigen wissenschaftlichen und technologischen Fortschritt. In jedem Experiment dieser kummulativen Dissertation untersuche ich das Kristallgitter von Nanometer dünnen Filmen nach der Anregung mit Femtosekunden-Laserpulsen. Die relative Änderung der Gitterkonstante, hervorgerufen durch thermische Ausdehnung oder Pikosekunden-Schallpulse, wird dabei direkt mittels ultraschneller Röntgenbeugung (UXRD) gemessen. Der Aufbau nutzt zur Bereitstellung von ultrakurzen Röntgenpulsen eine lasergetriebene Plasma-Röntgenquelle (PXS). Phononen und Spins üben gleichermaßen einen Druck auf das Gitter aus, welches entsprechend der elastsischen Eigenschaften des Materials reagiert, was das Gitter zu einem vielseitigen Sensor für ultraschenlle Wechselwirkungen macht. Zum einen untersuche ich Materialien mit starken magnetoelastischen Eigentschaften: die stark magnetostriktive Seltenen-Erden-Verbindung TbFe2, elementares Dysprosium oder das technologisch relavante Invar-Material FePt. Zum anderen habe ich eine umfangreiche Studie der Gitterdynamik von Bi1Y2Fe5O12 (Bi:YIG) angestellt, in dem der Literatur zufolge hochfrequente kohärente Spindynamiken durch Femtosekunden-Laseranregung zu beobachten sind. Diese stehenden Spinwellen (SSWs) höherer Ordnung entstehen durch die kohärente und inkohärente Bewegung von Atomen, in anderen Worten Phononen, welche ich durch UXRD vermessen habe. Somit sind wir in der Lage, die experimentellen Beobachtungen der Gitter- und Spindynamik qualitativ und quantitativ zu vereinigen. Dies geschieht durch eine Kombination von Viel-Temperatur- und Anisotropiemodellierung sowie elastische, magnetoelastische, und mikromagnetsiche Modelle. Die gemeinsamen Daten von UXRD und der zeitaufgelösten magnetooptischen Kerr-Effekt Messungen (tr-MOKE), um jeweils die Gitter- und Spindynamik zu messen, wurden in der Vergangenheit noch an unterschiedlichen experimentellen Aufbauten gemessen. Um die Quantifizierung präziser zu gestalten, haben wir in unserer Arbeitsgruppe UXRD und tr-MOKE in einem einzigen Aufbau kombiniert, welcher somit meines Wissens der erste seiner Art ist. Ich half bei dem Entwurf und der Inbetriebnahme des neuen Aufbaus, welcher die gleichzeitige Messung von Gitter- und Spindynamik auf einer ultraschnellen Zeitskala unter identischen Anregungsbedingungen ermöglicht. Außerdem entwickelte ich eine neue Messroutine für Röntgenbeugung, welche die Messzeit von UXRD-Experimenten um bis zu einer Größenordnungen reduziert. Es nennt sich das Schneiden des reziproken Raumes (reciprocal space slicing, RSS) und nutzt den Vorteil von Flächendetektoren die Bewegung von Beugungsreflexen zu detektieren, was von einer Änderung der Gitterkonstante einhergeht, ohne zeitintensive Scans der Beugungswinkel mit dem Goniometer durchzuführen. RSS ist besonders nützlich für ultraschnelle Beugungsexperimente, weil die Messzeit an Großgeräten wie Synchrotrons oder Freie Elektronen Laser eine seltene und teure Ressource ist. Darüber hinaus ist RSS nicht zwangsläufig auf die Anwendung in ultraschnellen Experimenten beschränkt und kann sogar auf andere Beugungsexperimente, wie die mit Neutronen und Elektronen, ausgeweitet werden. KW - ultrafast KW - X-ray diffraction KW - thin films KW - magnetoelasticity KW - ultraschnell KW - Röntgenbeugung KW - dünne Filme KW - Magnetoelastizität Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-561098 ER -