TY - THES A1 - Vacogne, Charlotte D. T1 - New synthetic routes towards well-defined polypeptides, morphologies and hydrogels T1 - Neue Syntheserouten zu wohldefinierten Polypeptiden, Morphologien und Hydrogelen N2 - Proteins are natural polypeptides produced by cells; they can be found in both animals and plants, and possess a variety of functions. One of these functions is to provide structural support to the surrounding cells and tissues. For example, collagen (which is found in skin, cartilage, tendons and bones) and keratin (which is found in hair and nails) are structural proteins. When a tissue is damaged, however, the supporting matrix formed by structural proteins cannot always spontaneously regenerate. Tailor-made synthetic polypeptides can be used to help heal and restore tissue formation. Synthetic polypeptides are typically synthesized by the so-called ring opening polymerization (ROP) of α-amino acid N-carboxyanhydrides (NCA). Such synthetic polypeptides are generally non-sequence-controlled and thus less complex than proteins. As such, synthetic polypeptides are rarely as efficient as proteins in their ability to self-assemble and form hierarchical or structural supramolecular assemblies in water, and thus, often require rational designing. In this doctoral work, two types of amino acids, γ-benzyl-L/D-glutamate (BLG / BDG) and allylglycine (AG), were selected to synthesize a series of (co)polypeptides of different compositions and molar masses. A new and versatile synthetic route to prepare polypeptides was developed, and its mechanism and kinetics were investigated. The polypeptide properties were thoroughly studied and new materials were developed from them. In particular, these polypeptides were able to aggregate (or self-assemble) in solution into microscopic fibres, very similar to those formed by collagen. By doing so, they formed robust physical networks and organogels which could be processed into high water-content, pH-responsive hydrogels. Particles with highly regular and chiral spiral morphologies were also obtained by emulsifying these polypeptides. Such polypeptides and the materials derived from them are, therefore, promising candidates for biomedical applications. N2 - Proteine, auch Polypeptide genannt, sind große Biomoleküle, die aus kleineren Aminosäuren bestehen. Diese sind zu langen Ketten miteinander verbunden, wie die Perlen auf einer Perlenkette. Sie werden in Zellen produziert, können in Tieren und Pflanzen gefunden werden und haben vielfältige Funktionen. Eine dieser Funktionen ist es, die umgebenen Zellen und Gewebe wie ein Gerüst zu stützen. Kollagen (welches in Haut, Knorpel, Sehnen und Knochen zu finden ist) und Keratin (welches in Haaren und Nägeln vorkommt) gehören zu diesen Strukturproteinen. Jedoch wenn ein Gewebe beschädigt ist, beispielsweise als Folge eines Unfalls, kann sich das Grundgerüst aus diesen Strukturproteinen manchmal nicht mehr selbst regenerieren. Maßgefertigte synthetische Polypeptide, können dafür verwendet werden, die Heilung und Wiederherstellung des Gewebes zu Unterstützen. Diese Polypeptide werden mit einer Reihe an chemischen Reaktionen synthetisiert, welche hauptsächlich darauf abzielen Aminosäuren miteinander zu verknüpfen. Synthetische Polypeptide sind weniger Komplex als die von Zellen hergestellten, natürlichen Polypeptide (Proteine). Während in den natürlichen Polypeptiden die Aminosäuren in einer von der DNA definierten Reihenfolge, welche als Sequenz bezeichnet wird, angeordnet sind, sind sie in synthetischen Polypeptiden zumeist zufällig verteilt. Die Konsequenz daraus ist, dass synthetische Polypeptide nicht immer so Leistungsfähig sind wie natürliche Proteine und ein durchdachtes Design benötigen. Zwei Aminosäuren wurden in dieser Dissertation sorgfältig ausgewählt und verwendet um eine Serie an Polypeptiden mit unterschiedlicher Zusammensetzung und Länge zu synthetisieren. Ein neuer und vielseitiger Syntheseweg wurde ebenfalls entwickelt und der zugrundeliegende Mechanismus untersucht. Die Polypeptide wurden gründlich analysiert und neue Materialien wurden aus ihnen entwickelt. In Lösung gebracht formten diese Fasern, ähnlich denen von Kollagen, welche sich wiederum zu robusten Netzwerken anordneten. Aus diesen Netzwerken ließen sich Hydrogele herstellen, welche in der Lage waren große Mengen an Wasser aufzunehmen. Diese Hydrogele wiederum stellen vielversprechende Kandidaten für biomedizinische Anwendungen dar. KW - polymer KW - chemistry KW - biomaterial KW - polymerization KW - kinetics KW - polypeptide KW - colloid KW - gelation KW - hydrogel KW - organogel KW - secondary structure KW - physical KW - NCA KW - N-carboxyanhydride KW - Polymer KW - Chemie KW - Biomaterial KW - Polymerisation KW - Kinetik KW - Polypeptid KW - Kolloid KW - Gelieren KW - Hydrogel KW - Organogel KW - Sekundärstruktur KW - physikalisch KW - NCA KW - N-carboxyanhydrid Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-396366 ER - TY - THES A1 - Tunn, Isabell T1 - From single molecules to bulk materials: tuning the viscoelastic properties of coiled coil cross-linked hydrogels N2 - The development of bioinspired self-assembling materials, such as hydrogels, with promising applications in cell culture, tissue engineering and drug delivery is a current focus in material science. Biogenic or bioinspired proteins and peptides are frequently used as versatile building blocks for extracellular matrix (ECM) mimicking hydrogels. However, precisely controlling and reversibly tuning the properties of these building blocks and the resulting hydrogels remains challenging. Precise control over the viscoelastic properties and self-healing abilities of hydrogels are key factors for developing intelligent materials to investigate cell matrix interactions. Thus, there is a need to develop building blocks that are self-healing, tunable and self-reporting. This thesis aims at the development of α-helical peptide building blocks, called coiled coils (CCs), which integrate these desired properties. Self-healing is a direct result of the fast self-assembly of these building blocks when used as material cross-links. Tunability is realized by means of reversible histidine (His)-metal coordination bonds. Lastly, implementing a fluorescent readout, which indicates the CC assembly state, self-reporting hydrogels are obtained. Coiled coils are abundant protein folding motifs in Nature, which often have mechanical function, such as in myosin or fibrin. Coiled coils are superhelices made up of two or more α-helices wound around each other. The assembly of CCs is based on their repetitive sequence of seven amino acids, so-called heptads (abcdefg). Hydrophobic amino acids in the a and d position of each heptad form the core of the CC, while charged amino acids in the e and g position form ionic interactions. The solvent-exposed positions b, c and f are excellent targets for modifications since they are more variable. His-metal coordination bonds are strong, yet reversible interactions formed between the amino acid histidine and transition metal ions (e.g. Ni2+, Cu2+ or Zn2+). His-metal coordination bonds essentially contribute to the mechanical stability of various high-performance proteinaceous materials, such as spider fangs, Nereis worm jaws and mussel byssal threads. Therefore, I bioengineered reversible His-metal coordination sites into a well-characterized heterodimeric CC that served as tunable material cross-link. Specifically, I took two distinct approaches facilitating either intramolecular (Chapter 4.2) and/or intermolecular (Chapter 4.3) His-metal coordination. Previous research suggested that force-induced CC unfolding in shear geometry starts from the points of force application. In order to tune the stability of a heterodimeric CC in shear geometry, I inserted His in the b and f position at the termini of force application (Chapter 4.2). The spacing of His is such that intra-CC His-metal coordination bonds can form to bridge one helical turn within the same helix, but also inter-CC coordination bonds are not generally excluded. Starting with Ni2+ ions, Raman spectroscopy showed that the CC maintained its helical structure and the His residues were able to coordinate Ni2+. Circular dichroism (CD) spectroscopy revealed that the melting temperature of the CC increased by 4 °C in the presence of Ni2+. Using atomic force microscope (AFM)-based single molecule force spectroscopy, the energy landscape parameters of the CC were characterized in the absence and the presence of Ni2+. His-Ni2+ coordination increased the rupture force by ~10 pN, accompanied by a decrease of the dissociation rate constant. To test if this stabilizing effect can be transferred from the single molecule level to the bulk viscoelastic material properties, the CC building block was used as a non-covalent cross-link for star-shaped poly(ethylene glycol) (star-PEG) hydrogels. Shear rheology revealed a 3-fold higher relaxation time in His-Ni2+ coordinating hydrogels compared to the hydrogel without metal ions. This stabilizing effect was fully reversible when using an excess of the metal chelator ethylenediaminetetraacetate (EDTA). The hydrogel properties were further investigated using different metal ions, i.e. Cu2+, Co2+ and Zn2+. Overall, these results suggest that Ni2+, Cu2+ and Co2+ primarily form intra-CC coordination bonds while Zn2+ also participates in inter-CC coordination bonds. This may be a direct result of its different coordination geometry. Intermolecular His-metal coordination bonds in the terminal regions of the protein building blocks of mussel byssal threads are primarily formed by Zn2+ and were found to be intimately linked to higher-order assembly and self-healing of the thread. In the above example, the contribution of intra-CC and inter-CC His-Zn2+ cannot be disentangled. In Chapter 4.3, I redesigned the CC to prohibit the formation of intra-CC His-Zn2+ coordination bonds, focusing only on inter-CC interactions. Specifically, I inserted His in the solvent-exposed f positions of the CC to focus on the effect of metal-induced higher-order assembly of CC cross-links. Raman and CD spectroscopy revealed that this CC building block forms α-helical Zn2+ cross-linked aggregates. Using this CC as a cross-link for star-PEG hydrogels, I showed that the material properties can be switched from viscoelastic in the absence of Zn2+ to elastic-like in the presence of Zn2+. Moreover, the relaxation time of the hydrogel was tunable over three orders of magnitude when using different Zn2+:His ratios. This tunability is attributed to a progressive transformation of single CC cross-links into His-Zn2+ cross-linked aggregates, with inter-CC His-Zn2+ coordination bonds serving as an additional, cross-linking mode. Rheological characterization of the hydrogels with inter-CC His-Zn2+ coordination raised the question whether the His-Zn2+ coordination bonds between CCs or also the CCs themselves rupture when shear strain is applied. In general, the amount of CC cross-links initially formed in the hydrogel as well as the amount of CC cross-links breaking under force remains to be elucidated. In order to more deeply probe these questions and monitor the state of the CC cross-links when force is applied, a fluorescent reporter system based on Förster resonance energy transfer (FRET) was introduced into the CC (Chapter 4.4). For this purpose, the donor-acceptor pair carboxyfluorescein and tetramethylrhodamine was used. The resulting self-reporting CC showed a FRET efficiency of 77 % in solution. Using this fluorescently labeled CC as a self-reporting, reversible cross-link in an otherwise covalently cross-linked star-PEG hydrogel enabled the detection of the FRET efficiency change under compression force. This proof-of-principle result sets the stage for implementing the fluorescently labeled CCs as molecular force sensors in non-covalently cross-linked hydrogels. In summary, this thesis highlights that rationally designed CCs are excellent reversibly tunable, self-healing and self-reporting hydrogel cross-links with high application potential in bioengineering and biomedicine. For the first time, I demonstrated that His-metal coordination-based stabilization can be transferred from the single CC level to the bulk material with clear viscoelastic consequences. Insertion of His in specific sequence positions was used to implement a second non-covalent cross-linking mode via intermolecular His-metal coordination. This His-metal binding induced aggregation of the CCs enabled for reversibly tuning the hydrogel properties from viscoelastic to elastic-like. As a proof-of-principle to establish self-reporting CCs as material cross-links, I labeled a CC with a FRET pair. The fluorescently labelled CC acts as a molecular force sensor and first preliminary results suggest that the CC enables the detection of hydrogel cross-link failure under compression force. In the future, fluorescently labeled CC force sensors will likely not only be used as intelligent cross-links to study the failure of hydrogels but also to investigate cell-matrix interactions in 3D down to the single molecule level. N2 - Die Entwicklung von biomimetischen Materialien, wie Hydrogelen, zur Anwendung in der Zellkultur und der regenerativen Medizin bildet einen aktuellen Schwerpunkt der Materialwissenschaften. Häufig werden natürlich vorkommende oder neu entwickelte Proteine als biomimetische Bausteine für Hydrogele genutzt, welche die extrazelluläre Umgebung von Zellen nachahmen. Gegenwärtig bleibt es jedoch eine Herausforderung, die Eigenschaften dieser Bausteine und der daraus entwickelten Materialien genau zu kontrollieren und gezielt maßzuschneidern. Jedoch stellen präzise kontrollierbare Materialeigenschaften einen Schlüsselfaktor für die Herstellung von intelligenten Materialen für die Zellkultur dar. Das Ziel dieser Arbeit ist die Entwicklung von α-helikalen Protein-Bausteinen, so genannter Coiled Coils (CCs), mit maßgeschneiderten, reversibel veränderbaren Eigenschaften. Dazu wurden reversible Histidin (His)-Metall-Koordinationsbindungen in ein CC Heterodimer eingefügt. Des Weiteren wurden Fluoreszenz-markierte CCs entwickelt, um das Verhalten der CC-Bausteine in Hydrogelen unter Krafteinwirkung zu untersuchen. In der Natur kommen CCs oft als Faltungsmotive in Proteinen vor, die eine mechanische Funktion haben, z.B. Myosin oder Fibrin. CCs bestehen aus zwei bis sieben α-Helices, die eine Superhelix bilden. Die Aminosäuresequenz von CCs ist hoch repetitiv und besteht aus sieben sich wiederholenden Aminosäurepositionen (abcdefg). In den Positionen a und d befinden sich aliphatische Aminosäuren, die den hydrophoben Kern des CCs bilden. Die Positionen e und g werden durch geladene Aminosäuren besetzt, die ionische Bindungen eingehen. In den Lösungsmittel-exponierten Positionen, können diverse Aminosäure platziert werden. Daher sind diese Positionen für Modifikationen gut geeignet. His-Metall-Koordinationsbindungen sind stabile Bindungen der Aminosäure His mit Übergangsmetallionen, wie Ni2+, Cu2+ oder Zn2+. His-Metall-Koordinationsbindungen tragen entscheidend zur mechanischen Stabilität von verschiedenen Protein-basierten Biomaterialien bei, z.B. in den Fangzähnen von Spinnen oder in Byssusfäden von Miesmuscheln. Daher wurden His-Metall-Koordinationsstellen in dieser Arbeit verwendet, um ein gut charakterisiertes CC Heterodimer zu stabilisieren. Zwei verschiedene Ansätze wurden zur Stabilisierung des CCs, und den daraus synthetisierten Materialien, genutzt. Zum einen wurden die His-Metall-Koordinationsbindungen so im CC platziert, dass primär Koordination innerhalb einer Helix stattfindet (intra-CC) (Kapitel 4.2). Zum anderen wurde His in Positionen eingefügt, die nur Metall-Koordinationsbindungen zwischen den CCs erlauben (inter-CC) (Kapitel 4.3). Bisherige Forschungsergebnisse zur mechanischen Entfaltung von CCs in der Schergeometrie lassen vermuten, dass die Entfaltung am Angriffspunkt der Kraft beginnt. Um die Stabilität einzelner CC Heterodimere in der Schergeometrie zu erhöhen, habe ich His-Metall Koordinationsbindungen in den Positionen b und f an den Enden der CC-Peptide einfügt (intra-CC), an denen die Scherkraft angreift (Kapitel 4.2). Mittels Raman Spektroskopie konnte ich zeigen, dass das His-modifizierte CC α-helikal bleibt und Ni2+ koordiniert. Zirkulardichroismus Spektroskopie wurde genutzt, um die thermodynamische Stabilität mit und ohne Ni2+ zu ermitteln. Unter Zugabe von Ni2+ erhöhte sich die Schmelztemperatur des CCs um 4 °C. Um die Energielandschaft der Entfaltung zu untersuchen, wurde Einzelmolekülkraftspektroskopie mit dem Rasterkraftmikroskop durchgeführt. His-Ni2+-Koordination führte zu einer Erhöhung der Abrisskraft um 10 pN und einer 10-fach verringerten Dissoziationskonstante. Die Koordination von Ni2+ führt demnach zu einer Stabilisierung des CCs. Um zu testen, ob der stabilisierende Effekt vom Einzelmolekül auf die viskoelastischen Eigenschaften von Hydrogelen übertragbar ist, wurde das CC als Vernetzungs-Baustein für sternförmiges Polyethylenglykol genutzt. Scherrheologie zeigte, dass die Relaxationszeit der CC-Hydrogele bei Zugabe von Ni2+ um das 3-fache erhöht ist. Dieser stabilisierende Effekt war vollkommen reversibel, wenn Metallchelatoren, wie Ethylendiamintetraessigsäure (EDTA) zugegeben wurden. Des Weiteren konnte ich zeigen, dass Cu2+ und Co2+ intra-CC Koordinationsbindungen eingehen und einen ähnlichen Effekt auf die Relaxationszeit haben wie Ni2+, wohingegen Zn2+ auch zwischen verschiedenen CCs (inter-CC) koordiniert wurde. Intermolekulare His-Zn2+-Koordination an den Enden der Protein-Bausteine von Byssusfäden ist essentiell für deren hierarchische Struktur und Selbstheilung nach mechanischer Belastung. Im oben beschriebenen CC kann der Effekt der intra- und inter-CC His-Zn2+-Koordination nicht klar voneinander getrennt werden. In Kapitel 4.3 wurden die His daher mit größerem Abstand in das CC eingefügt, so dass nur inter-CC Zn2+-Koordination möglich war. Raman und Zirkulardichroismus Spektroskopie zeigten, dass dieses CC unter Zugabe von Zn2+ aggregiert. Während sich die CC-Hydrogele ohne Zn2+ viskoelastisch verhielten, führte die Zugabe von Zn2+ zu annähernd elastischem Verhalten. Unter Verwendung von verschiedenen His:Zn2+ Verhältnissen, konnte die Relaxationszeit in einem großen Bereich gezielt verändert werden. Diese maßgeschneiderten Materialeigenschaften sind auf die schrittweise Umwandlung von einzelnen CC-Vernetzungen zu CC-Aggregaten mit inter-CC His-Zn2+-Koordination zurückzuführen. Die Rheologiemessungen mit den His-Zn2+-vernetzten CC-Aggregaten werfen die Frage auf, ob die inter-CC His-Zn2+-Koordinationsbindungen oder die CCs selbst brechen, wenn eine Kraft wirkt. Im Allgemeinen sind die Mechanismen der Dissoziation von Vernetzern im Hydrogel unter Krafteinwirkung größtenteils unerforscht. Um diese zu beleuchten, wurde das CC mit einem Fluoreszenz-Reportersystem ausgestattet (Kapitel 4.4). Genauer gesagt, wurde ein Förster Resonanzenergietransfer (FRET) Paar (Carboxyfluorescein-Tetramethylrhodamin) an das CC gekoppelt. Die Effizienz des Energietransfers gibt in diesem System Aufschluss darüber, ob das CC assoziiert oder dissoziiert ist. Das FRET-markierte CC wurde als nicht-kovalenter, reversibler molekularer Kraftsensor in einem ansonsten kovalent vernetzten Hydrogel eingesetzt. Unter Kompression verringerte sich die FRET-Effizienz, was einen ersten Hinweise auf die Dissoziation des CCs darstellt. Dieses Ergebnis verdeutlicht, dass CCs hervorragende molekulare Kraftsensoren für biomimetische Materialien darstellen. Diese Arbeit demonstriert, dass CCs mit maßgeschneiderten, reversibel manipulierbaren Eigenschaften exzellente Bausteine für Hydrogele sind, die in der Zellkultur und der regenerativen Medizin Verwendung finden können. Es konnte zum ersten Mal gezeigt werden, dass einzelne CCs durch His-Metall-Koordinationsbindungen reversibel stabilisiert werden können und dass diese molekulare Stabilisierung direkt auf die viskoelastischen Materialeigenschaften von Hydrogelen übertragbar ist. Durch gezieltes Einfügen von intermolekularen His-Metall-Koordinationsbindungen gelang es, CC-Hydrogele mit einem zweiten übergeordneten His-Zn2+ basierten Vernetzungsmodus herzustellen. So konnte die Relaxationszeit der Hydrogele über einen weiten Bereich maßgeschneidert kontrolliert werden. Um CCs als molekulare Kraftsensoren in Materialien zu etablieren, wurde das CC Heterodimer mit einem FRET-Reportersystem ausgestattet. Erste Experimente deuten darauf hin, dass die Dissoziation des CCs im Hydrogel unter Krafteinwirkung optisch verfolgt werden kann. Zukünftig können CCs mit maßgeschneiderter Stabilität nicht nur als molekulare Kraftsensoren für Materialien, sondern auch zur Erforschung von Zell-Matrix Wechselwirkungen eingesetzt werden. T2 - Von Molekülen zu Materialien: Coiled Coil-vernetzte Hydrogele mit maßgeschneiderten viskoelastischen Eigenschaften KW - biochemistry KW - coiled coil KW - histidine-metal coordination KW - Förster resonance energy transfer (FRET) KW - rheology KW - single-molecule force spectroscopy KW - Biochemie KW - Coiled Coil KW - Hydrogel KW - Histidin-Metall Koordination KW - Förster Resonanz Energie Transfer (FRET) KW - Rheologie KW - Einzelmolekülkraftspektroskopie Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-475955 ER - TY - THES A1 - Couturier, Jean-Philippe T1 - New inverse opal hydrogels as platform for detecting macromolecules T1 - Neue inverse Opal-Hydrogele als Plattform für die Detektion von Makromolekülen N2 - In this thesis, a route to temperature-, pH-, solvent-, 1,2-diol-, and protein-responsive sensors made of biocompatible and low-fouling materials is established. These sensor devices are based on the sensitivemodulation of the visual band gap of a photonic crystal (PhC), which is induced by the selective binding of analytes, triggering a volume phase transition. The PhCs introduced by this work show a high sensitivity not only for small biomolecules, but also for large analytes, such as glycopolymers or proteins. This enables the PhC to act as a sensor that detects analytes without the need of complex equipment. Due to their periodical dielectric structure, PhCs prevent the propagation of specific wavelengths. A change of the periodicity parameters is thus indicated by a change in the reflected wavelengths. In the case explored, the PhC sensors are implemented as periodically structured responsive hydrogels in formof an inverse opal. The stimuli-sensitive inverse opal hydrogels (IOHs) were prepared using a sacrificial opal template of monodispersed silica particles. First, monodisperse silica particles were assembled with a hexagonally packed structure via vertical deposition onto glass slides. The obtained silica crystals, also named colloidal crystals (CCs), exhibit structural color. Subsequently, the CCs templates were embedded in polymer matrix with low-fouling properties. The polymer matrices were composed of oligo(ethylene glycol) methacrylate derivatives (OEGMAs) that render the hydrogels thermoresponsive. Finally, the silica particles were etched, to produce highly porous hydrogel replicas of the CC. Importantly, the inner structure and thus the ability for light diffraction of the IOHs formed was maintained. The IOH membrane was shown to have interconnected pores with a diameter as well as interconnections between the pores of several hundred nanometers. This enables not only the detection of small analytes, but also, the detection of even large analytes that can diffuse into the nanostructured IOH membrane. Various recognition unit – analyte model systems, such as benzoboroxole – 1,2-diols, biotin – avidin and mannose – concanavalin A, were studied by incorporating functional comonomers of benzoboroxole, biotin and mannose into the copolymers. The incorporated recognition units specifically bind to certain low and highmolar mass biomolecules, namely to certain saccharides, catechols, glycopolymers or proteins. Their specific binding strongly changes the overall hydrophilicity, thus modulating the swelling of the IOH matrices, and in consequence, drastically changes their internal periodicity. This swelling is amplified by the thermoresponsive properties of the polymer matrix. The shift of the interference band gap due to the specific molecular recognition is easily visible by the naked eye (up to 150 nm shifts). Moreover, preliminary trial were attempted to detect even larger entities. Therefore anti-bodies were immobilized on hydrogel platforms via polymer-analogous esterification. These platforms incorporate comonomers made of tri(ethylene glycol) methacrylate end-functionalized with a carboxylic acid. In these model systems, the bacteria analytes are too big to penetrate into the IOH membranes, but can only interact with their surfaces. The selected model bacteria, as Escherichia coli, show a specific affinity to anti-body-functionalized hydrogels. Surprisingly in the case functionalized IOHs, this study produced weak color shifts, possibly opening a path to detect directly living organism, which will need further investigations. N2 - Periodisch strukturierte, funktionelle responsive Hydrogele wurden in Form von inversen Opalen (IOH) aufgebaut und als Basiselement für Temperatur-, pH-, lösungsmittel-, 1,2-diol- oder protein-sensitive Sensorsysteme entwickelt. Dazu wurden aus biokompatiblen Bausteinen funktionelle photonische Kristalle aufgebaut, deren optische Bandlücke durch selektive Bindung eines Analyten moduliert wird, indem dieser einen Volumen-Phasenübergang induziert.Mittels solcher responsiver photonische Kristalle ist es möglich, Analyte ohne aufwendige Geräte durch Farbänderung einfach zu detektieren. Die entwickelten Systeme zeigen nicht nur eine hohe Empfindlichkeit gegenüber kleinen Biomolekülen, sondern auch gegenüber größeren Analyten wie z.B. Glycopolymeren und Proteinen, was bisher nicht bekannt war. Die stimuli-sensitiven inversen Opal Hydrogele (IOHs) wurden in mehreren Stufen hergestellt. Als erstes wurden dafür kolloidale Kristalle mit hexagonal gepackten Strukturen aus monodispersen SiO2-Partikeln auf Glasträgern auf ebaut (“Opal”). Die Opale mit charakteristischen Strukturfarben wurden anschließend in eine polymere Hydrogelmatrix eingebettet. Diese wurde aus Oligo(ethylenglycol)methacrylaten (OEGMAs) hergestellt, so dass die Hydrogele sowohl thermosensitives als auch “lowfouling” Verhalten zeigen. Im letzten Schritt wurden die SiO2-Partikel entfernt und so eine hochporöse Hydrogel-Replika der Opale erhalten unter Erhalt deren innerer Struktur und Strukturfarbe. Die miteinander verbunden Poren der IOHMembran besitzen einen Durchmesser von einigen hundert Nanometern. Dies ermöglichte nicht nur die Detektion von kleinen Analyten, sondern auch die Detektion von deutlich größeren, makromolekularen Analyten, die ebenfalls in die Nanostrukturen der IOH Membran diffundieren können. Modellsysteme bestanden immer aus einer Erkennungsgruppe und einem Analyten, beispielsweise aus Benzoboroxol – 1,2-Diol, Biotin – Avidin und Mannose – Lectin (Concanavalin A). Für dieseModellsysteme wurden OEGMAs mitMonomeren copolymerisiert, die mit Benzoboroxol, Biotin bzw.Mannose funktionalisiert waren. Die so im Polymer eingebauten Erkennungsgruppen binden spezifisch an bestimmte Biomoleküle unterschiedlicherMolmassen, wie z.B. niedermolekulare Saccharide oder Catechin, als auch hochmolekulare Glycopolymere oder Proteine. Der spezifische Bindungsvorgang moduliert die Gesamthydrophilie, so dass sich der Quellgrad der IOH-Matrix ändert. Dies wiederrumverändert die innere Periodizität und damit die Strukturfarbe. Dabei wird der Quelleffekt durch die Thermosensitivität der Hydrogele massiv verstärkt. Eine spezifischeMolekülanbindung lässt sich so optisch, z.T. sogar mit dem Auge, erkennen aufgrund der deutlichen Verschiebung der Strukturfarbe um bis zu 150 nm. Des Weiteren wurden auch erste Versuche zur Detektion von noch größeren Analyten unternommen. Dafür wurden Antiköper durch nachträgliche Modifizierung der Polymerseitenketten auf den Hydrogeloberflächen immobilisiert. Mit diesem Modellsystem konnten unterschiedliche Bakterienarten durch Antikörper spezifisch gebunden werden. Die verwendeten Bakterienarten sind zwar zu groß, um in die Membran des IOH Systems einzudringen, können jedoch mit der IOH-Oberfläche wechselwirken. Insbesondere dasModellsystem mit Escherichia coli zeigte eine starke, spezifische Affinität zu dem Antikörper-funktionalisierten IOH. Überraschenderweise zeigte sich bei den Versuchen in Gegenwart des Analyten eine kleine Farbänderung der funktionalisierten IOH. Damit eröffnet sich u.U. dieMöglichkeit, mit solchen responsiven photonischen Kristallen auch lebende Organismen spezifisch und einfach zu detektieren, was in weiterführenden Arbeiten zu klären sein wird. KW - inverse opal KW - hydrogel KW - responsive polymer KW - inverse Opale KW - Hydrogel KW - schaltbare Polymere Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-98412 ER -