TY - JOUR A1 - Riedl, Simon A1 - Melnick, Daniel A1 - Njue, Lucy A1 - Sudo, Masafumi A1 - Strecker, Manfred T1 - Mid-Pleistocene to recent crustal extension in the inner graben of the Northern Kenya Rift JF - Geochemistry, geophysics, geosystems N2 - Magmatic continental rifts often constitute nascent plate boundaries, yet long-term extension rates and transient rate changes associated with these early stages of continental breakup remain difficult to determine. Here, we derive a time-averaged minimum extension rate for the inner graben of the Northern Kenya Rift (NKR) of the East African Rift System for the last 0.5 m.y. We use the TanDEM-X science digital elevation model to evaluate fault-scarp geometries and determine fault throws across the volcano-tectonic axis of the inner graben of the NKR. Along rift-perpendicular profiles, amounts of cumulative extension are determined, and by integrating four new Ar-40/Ar-39 radiometric dates for the Silali volcano into the existing geochronology of the faulted volcanic units, time-averaged extension rates are calculated. This study reveals that in the inner graben of the NKR, the long-term extension rate based on mid-Pleistocene to recent brittle deformation has minimum values of 1.0-1.6 mm yr(-1), locally with values up to 2.0 mm yr(-1). A comparison with the decadal, geodetically determined extension rate reveals that at least 65% of the extension must be accommodated within a narrow, 20-km-wide zone of the inner rift. In light of virtually inactive border faults of the NKR, we show that extension is focused in the region of the active volcano-tectonic axis in the inner graben, thus highlighting the maturing of continental rifting in the NKR. KW - extensional tectonics KW - Kenya Rift KW - TanDEM-X DEM KW - DEM analysis KW - geochronology KW - normal faults Y1 - 2022 U6 - https://doi.org/10.1029/2021GC010123 SN - 1525-2027 VL - 23 IS - 3 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Richter, Maximilian A1 - Brune, Sascha A1 - Riedl, Simon A1 - Glerum, Anne A1 - Neuharth, Derek A1 - Strecker, Manfred T1 - Controls on asymmetric rift dynamics BT - Numerical modeling of strain localization and fault evolution in the Kenya Rift JF - Tectonics / American Geophysical Union, AGU ; European Geophysical Society, EGS N2 - Complex, time-dependent, and asymmetric rift geometries are observed throughout the East African Rift System (EARS) and are well documented, for instance, in the Kenya Rift. To unravel asymmetric rifting processes in this region, we conduct 2D geodynamic models. We use the finite element software ASPECT employing visco-plastic rheologies, mesh-refinement, distributed random noise seeding, and a free surface. In contrast to many previous numerical modeling studies that aimed at understanding final rifted margin symmetry, we explicitly focus on initial rifting stages to assess geodynamic controls on strain localization and fault evolution. We thereby link to geological and geophysical observations from the Southern and Central Kenya Rift. Our models suggest a three-stage early rift evolution that dynamically bridges previously inferred fault-configuration phases of the eastern EARS branch: (1) accommodation of initial strain localization by a single border fault and flexure of the hanging-wall crust, (2) faulting in the hanging-wall and increasing upper-crustal faulting in the rift-basin center, and (3) loss of pronounced early stage asymmetry prior to basinward localization of deformation. This evolution may provide a template for understanding early extensional faulting in other branches of the East African Rift and in asymmetric rifts worldwide. By modifying the initial random noise distribution that approximates small-scale tectonic inheritance, we show that a spectrum of first-order fault configurations with variable symmetry can be produced in models with an otherwise identical setup. This approach sheds new light on along-strike rift variability controls in active asymmetric rifts and proximal rifted margins. KW - asymmetric rifting KW - rift variability KW - numerical model KW - structural KW - inheritance KW - Kenya Rift Y1 - 2021 U6 - https://doi.org/10.1029/2020TC006553 SN - 0278-7407 SN - 1944-9194 VL - 40 IS - 5 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Deino, A. L. A1 - Dommain, René A1 - Keller, C. B. A1 - Potts, R. A1 - Behrensmeyer, A. K. A1 - Beverly, E. J. A1 - King, J. A1 - Heil, C. W. A1 - Stockhecke, M. A1 - Brown, E. T. A1 - Moerman, J. A1 - deMenocal, P. A1 - Deocampo, D. A1 - Garcin, Yannick A1 - Levin, N. E. A1 - Lupien, R. A1 - Owen, R. B. A1 - Rabideaux, N. A1 - Russell, J. M. A1 - Scott, J. A1 - Riedl, S. A1 - Brady, K. A1 - Bright, J. A1 - Clark, J. B. A1 - Cohen, A. A1 - Faith, J. T. A1 - Noren, A. A1 - Muiruri, V. A1 - Renaut, R. A1 - Rucina, S. A1 - Uno, K. T1 - Chronostratigraphic model of a high-resolution drill core record of the past million years from the Koora Basin, south Kenya Rift: Overcoming the difficulties of variable sedimentation rate and hiatuses JF - Quaternary science reviews : the international multidisciplinary research and review journal N2 - The Olorgesailie Drilling Project and the related Hominin Sites and Paleolakes Drilling Project in East Africa were initiated to test hypotheses and models linking environmental change to hominin evolution by drilling lake basin sediments adjacent to important archeological and paleoanthropological sites. Drill core OL012-1A recovered 139 m of sedimentary and volcaniclastic strata from the Koora paleolake basin, southern Kenya Rift, providing the opportunity to compare paleoenvironmental influences over the past million years with the parallel record exposed at the nearby Olorgesailie archeological site. To refine our ability to link core-to-outcrop paleoenvironmental records, we institute here a methodological framework for deriving a robust age model for the complex lithostratigraphy of OL012-1A. Firstly, chronostratigraphic control points for the core were established based on 4 Ar/39Ar ages from intercalated tephra deposits and a basal trachyte flow, as well as the stratigraphic position of the Brunhes-Matuyama geomagnetic reversal. This dataset was combined with the position and duration of paleosols, and analyzed using a new Bayesian algorithm for high-resolution age-depth modeling of hiatus-bearing stratigraphic sections. This model addresses three important aspects relevant to highly dynamic, nonlinear depositional environments: 1) correcting for variable rates of deposition, 2) accommodating hiatuses, and 3) quantifying realistic age uncertainty with centimetric resolution. Our method is applicable to typical depositional systems in extensional rifts as well as to drill cores from other dynamic terrestrial or aquatic environments. We use the core age model and lithostratigraphy to examine the inter connectivity of the Koora Basin to adjacent areas and sources of volcanism. (C) 2019 Elsevier Ltd. All rights reserved. KW - Pleistocene KW - Paleolimnology KW - East Africa KW - Sedimentology KW - Radiogenic isotopes KW - Bayesian modeling KW - paleosol KW - Tephrostratigraphy KW - Magnetostratigraphy KW - Kenya Rift Y1 - 2019 U6 - https://doi.org/10.1016/j.quascirev.2019.05.009 SN - 0277-3791 VL - 215 SP - 213 EP - 231 PB - Elsevier CY - Oxford ER -